Question
upstudy study bank question image url

Part 1 of 4 Evaluate the function \( h(x)=x^{4}+3 x^{2}+8 \) at the given values of the independent variable and simplify. \( \begin{array}{llll}\text { a. } h(2) & \text { b. } h(-1) & \text { c. } h(-x) & \text { d. } h(3 a)\end{array} \) \( \begin{array}{l}\text { a. } h(2)=\square \text { (Simplify your answer.) }\end{array} \)

Ask by Mitchell Black. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( h(2) = 36 \)

Solution

Substitute \( x=2 \) into the expression \( x^{4}+3x^{2}+8 \). Evaluate the expression by following steps: - step0: Evaluate: \(x^{4}+3x^{2}+8\) - step1: Substitute: \(2^{4}+3\times 2^{2}+8\) - step2: Multiply the terms: \(2^{4}+12+8\) - step3: Evaluate the power: \(16+12+8\) - step4: Add the numbers: \(36\) The value of \( h(2) \) is 36.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To evaluate the function \( h(x) = x^{4} + 3x^{2} + 8 \) for the given values: **a.** For \( h(2) \): \[ h(2) = (2)^{4} + 3(2)^{2} + 8 = 16 + 3 \cdot 4 + 8 = 16 + 12 + 8 = 36 \] Thus, \( h(2) = 36 \). **b.** For \( h(-1) \): \[ h(-1) = (-1)^{4} + 3(-1)^{2} + 8 = 1 + 3 \cdot 1 + 8 = 1 + 3 + 8 = 12 \] Thus, \( h(-1) = 12 \). **c.** For \( h(-x) \): \[ h(-x) = (-x)^{4} + 3(-x)^{2} + 8 = x^{4} + 3x^{2} + 8 \] Thus, \( h(-x) = h(x) \) (the function is even). **d.** For \( h(3a) \): \[ h(3a) = (3a)^{4} + 3(3a)^{2} + 8 = 81a^{4} + 3 \cdot 9a^{2} + 8 = 81a^{4} + 27a^{2} + 8 \] Thus, \( h(3a) = 81a^{4} + 27a^{2} + 8 \). Summarizing all evaluations: \[ \begin{align*} a. & \quad h(2) = 36 \\ b. & \quad h(-1) = 12 \\ c. & \quad h(-x) = h(x) \\ d. & \quad h(3a) = 81a^{4} + 27a^{2} + 8 \end{align*} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy