Question
upstudy study bank question image url

(4) \( \frac{\sin \theta \cos \theta}{1+\cos \theta}=\frac{1-\cos \theta}{\tan \theta} \)

Ask by Turnbull West. in South Africa
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The solution to the equation is all angles \( \theta \) except those where \( \theta \) is an odd multiple of \( \frac{\pi}{2} \).

Solution

Solve the equation \( \frac{\sin \theta \cos \theta}{1+\cos \theta}=\frac{1-\cos \theta}{\tan \theta} \). Solve the equation by following steps: - step0: Solve for \(\theta\): \(\frac{\sin\left(\theta \right)\cos\left(\theta \right)}{1+\cos\left(\theta \right)}=\frac{1-\cos\left(\theta \right)}{\tan\left(\theta \right)}\) - step1: Find the domain: \(\frac{\sin\left(\theta \right)\cos\left(\theta \right)}{1+\cos\left(\theta \right)}=\frac{1-\cos\left(\theta \right)}{\tan\left(\theta \right)},\theta \neq \frac{k\pi }{2},k \in \mathbb{Z}\) - step2: Rewrite the expression: \(\frac{\sin\left(\theta \right)\cos\left(\theta \right)}{1+\cos\left(\theta \right)}=\frac{1-\cos\left(\theta \right)}{\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}}\) - step3: Simplify the expression: \(\frac{\sin\left(\theta \right)\cos\left(\theta \right)}{1+\cos\left(\theta \right)}=\frac{\left(1-\cos\left(\theta \right)\right)\cos\left(\theta \right)}{\sin\left(\theta \right)}\) - step4: Expand the expression: \(\frac{\sin\left(\theta \right)\cos\left(\theta \right)}{1+\cos\left(\theta \right)}=\frac{\cos\left(\theta \right)-\cos^{2}\left(\theta \right)}{\sin\left(\theta \right)}\) - step5: Cross multiply: \(\sin\left(\theta \right)\cos\left(\theta \right)\sin\left(\theta \right)=\left(1+\cos\left(\theta \right)\right)\left(\cos\left(\theta \right)-\cos^{2}\left(\theta \right)\right)\) - step6: Simplify the equation: \(\sin^{2}\left(\theta \right)\cos\left(\theta \right)=\left(1+\cos\left(\theta \right)\right)\left(\cos\left(\theta \right)-\cos^{2}\left(\theta \right)\right)\) - step7: Rewrite the expression: \(\cos\left(\theta \right)-\cos^{3}\left(\theta \right)=\cos\left(\theta \right)-\cos^{3}\left(\theta \right)\) - step8: Cancel equal terms: \(0=0\) - step9: The statement is true: \(\theta \in \mathbb{R}\) - step10: Check if the solution is in the defined range: \(\theta \in \mathbb{R},\theta \neq \frac{k\pi }{2},k \in \mathbb{Z}\) - step11: Find the intersection: \(\theta \neq \frac{k\pi }{2},k \in \mathbb{Z}\) The solution to the equation \( \frac{\sin \theta \cos \theta}{1+\cos \theta}=\frac{1-\cos \theta}{\tan \theta} \) is \( \theta \neq \frac{k\pi}{2}, k \in \mathbb{Z} \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the equation \( \frac{\sin \theta \cos \theta}{1+\cos \theta}=\frac{1-\cos \theta}{\tan \theta} \), we can clarify it step-by-step: First, recall that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \). Thus, we can rewrite the right-hand side: \[ \frac{1 - \cos \theta}{\tan \theta} = \frac{1 - \cos \theta}{\frac{\sin \theta}{\cos \theta}} = \frac{(1 - \cos \theta) \cos \theta}{\sin \theta} \] Now the equation becomes: \[ \frac{\sin \theta \cos \theta}{1+\cos \theta} = \frac{(1 - \cos \theta) \cos \theta}{\sin \theta} \] Cross-multiplying gives us: \[ \sin^2 \theta \cos \theta = (1 - \cos \theta)(1 + \cos \theta) = 1 - \cos^2 \theta = \sin^2 \theta \] So we have: \[ \sin^2 \theta \cos \theta = \sin^2 \theta \] Assuming \( \sin^2 \theta \neq 0 \) (otherwise \( \theta = n\pi \) for \( n \in \mathbb{Z} \)), we can safely divide both sides by \( \sin^2 \theta \): \[ \cos \theta = 1 \] This means: \[ \theta = 2n\pi \quad (n \in \mathbb{Z}) \] Thus, the complete solution to the equation is \( \theta = 2n\pi \) for any integer \( n \). So, the solutions are \( \theta = 0, 2\pi, 4\pi, \ldots \) and so on.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy