Question
upstudy study bank question image url

\( \varliminf _ { x \rightarrow - 3 } \frac { x ^ { 2 } - 2 x - 15 } { x + 3 } \)

Ask by Best Wheeler. in Mexico
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El límite inferior es -8.

Solution

Para evaluar   lim infₓ→₋3 (x² - 2x - 15)⁄(x + 3), observa que el numerador se puede factorizar:   x² - 2x - 15 = (x - 5)(x + 3). Por lo tanto, la función se simplifica a   (x - 5)(x + 3)/(x + 3) = x - 5  (provided x ≠ -3). Aunque en x = -3 la función no está definida, al calcular el límite podemos considerar la función simplificada. Así,   limₓ→₋3 (x - 5) = (-3) - 5 = -8. Por lo tanto, el límite inferior es -8.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To find \( \varliminf _ { x \rightarrow - 3 } \frac { x ^ { 2 } - 2 x - 15 } { x + 3 } \), we start by simplifying the expression. The numerator \( x^2 - 2x - 15 \) can be factored as \( (x - 5)(x + 3) \). So, we can rewrite the limit: \[ \frac{x^2 - 2x - 15}{x + 3} = \frac{(x - 5)(x + 3)}{x + 3} \] For \( x \neq -3 \), this simplifies to \( x - 5 \). Therefore, we need to find the limit as \( x \) approaches \(-3\): \[ \lim_{x \to -3} (x - 5) = -3 - 5 = -8 \] Since this limit exists and is not affected by the approach (from the left or the right), we have: \[ \varliminf_{x \rightarrow -3} \frac{x^2 - 2x - 15}{x + 3} = -8 \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy