Question
upstudy study bank question image url

Factor completely. \( 3 x^{2}+20 x-7 \)

Ask by Carlson Bradley. in the United States
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( 3x^{2} + 20x - 7 = (3x - 1)(x + 7) \)

Solution

We need to factor the quadratic polynomial: 3x² + 20x - 7. Step 1: Multiply the coefficient of x² (which is 3) by the constant term (-7): 3 × (-7) = -21. Step 2: We need two numbers that multiply to -21 and add up to 20. The numbers 21 and -1 work because 21 × (-1) = -21 and 21 + (-1) = 20. Step 3: Rewrite the middle term 20x using 21 and -1:   3x² + 21x - x - 7. Step 4: Factor by grouping:   Group the terms: (3x² + 21x) + (-x - 7).   Factor out common factors in each group:    From 3x² + 21x, factor out 3x: 3x(x + 7).    From -x - 7, factor out -1: -1(x + 7). Step 5: Notice the common factor (x + 7):   (3x - 1)(x + 7). Thus, the completely factored form of the expression is (3x - 1)(x + 7).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To factor the quadratic expression \( 3x^{2}+20x-7 \) completely, start by looking for two numbers that multiply to \( 3 \times (-7) = -21 \) and add to \( 20 \). Those numbers are \( 21 \) and \( -1 \). Now, rewrite the middle term: \[ 3x^{2} + 21x - 1x - 7 \] Next, group the terms: \[ (3x^{2} + 21x) + (-1x - 7) \] Factor out the common factors in each group: \[ 3x(x + 7) - 1(x + 7) \] Now, factor out the common binomial: \[ (3x - 1)(x + 7) \] So, the completely factored form is: \[ (3x - 1)(x + 7) \]

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy