Question
upstudy study bank question image url

\( \left. \begin{array} { l } { x \in Z } \\ { \frac { 2 } { x - 6 } < \frac { - 5 } { 3 } } \\ { \Rightarrow x = ? } \end{array} \right. \)

Ask by Lindsey Greene. in Turkey
Feb 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

x = 5

Solution

Biz quyidagi tengsizlikni yechamiz:   2/(x – 6) < –5/3,  x ∈ ℤ Birinchidan, x – 6 = 0 bo'lishi mumkin emas, ya’ni x ≠ 6. Kenaymiz:   2/(x – 6) < –5/3 Ratsional ifodali tengsizliklarda kasrni ko‘paytirishda maxrajning ishorasini inobatga olish kerak. Shu sababli x – 6 ning musbat yoki manfiy ekanligini alohida ko‘rib chiqamiz. 1) Agar x – 6 > 0 bo‘lsa, ya’ni x > 6:   Bu holatda maxraj musbat bo‘lganligi sababli, ikkala tomonini x – 6 ga ko‘paytirsak tengsizlik yo‘nalishi oʻzgarmaydi:     2 < –5/3 · (x – 6)   Ko‘pga ko‘paytiramiz:     2 · 3 < –5(x – 6) ⟹ 6 < –5(x – 6)   Bu esa:     x – 6 < –6/5,   lekin x – 6 > 0 bo‘lishi kerak bo‘lganligi sababli, bu ziddiyat hosil qiladi. Demak, x > 6 uchun yechim yo‘q. 2) Agar x – 6 < 0 bo‘lsa, ya’ni x < 6:   Bu holatda x – 6 manfiy, shuning uchun ikkala tomonini (x – 6) ga ko‘paytirganda tengsizlik ishorasi o‘zgaradi:     2 > –5/3 · (x – 6)   Yana 3 ga ko‘paytiramiz:     6 > –5(x – 6)     6 > –5x + 30     –5x < 6 – 30 ⟹ –5x < –24   Bo‘linish orqali (–5 ga bo‘lamiz va tengsizlik ishorasi o‘zgaradi):     x > 24/5 ⟹ x > 4.8   Shu bilan x uchun quyidagi shartlar amal qiladi:     4.8 < x < 6  va  x ∈ ℤ   Yagona butun son bu oraliqda x = 5. Natijada, tengsizlikning yagona butun sonli yechimi:   x = 5.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the inequality \( \frac{2}{x - 6} < \frac{-5}{3} \), we first cross-multiply to eliminate the fractions, but be cautious since it involves the sign of the inequality! We rearrange this to get \( 2 \cdot 3 < -5(x - 6) \), leading to \( 6 < -5x + 30 \). Now, simplify this to find \( 5x < 30 - 6 \), which equals \( 5x < 24 \). Dividing both sides by 5 gives us \( x < \frac{24}{5} \) or \( x < 4.8 \). Since \( x \) must be an integer, the possible values for \( x \) are \( x \leq 4 \). However, remember that the expression \( \frac{2}{x - 6} \) is undefined at \( x = 6 \). So, the final solution is \( x \in \mathbb{Z} \) such that \( x < 5 \) (or specifically, \( x = 4, 3, 2, 1, 0, -1, \ldots \)). The integer solutions are \( x = 4, 3, 2, 1, 0, -1, -2, \ldots\).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy