Question
upstudy study bank question image url

25. \( \left(x^{\frac{1}{2}}+x^{\frac{1}{4}}-1\right)^{3} \).

Ask by Phillips Weston. in Mexico
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La expresión simplificada es \( x\sqrt{x} - 5\sqrt[4]{x^{3}} - 1 + 3x\sqrt[4]{x} + 3\sqrt[4]{x} \).

Solution

Para simplificar la expresión \( \left(x^{\frac{1}{2}}+x^{\frac{1}{4}}-1\right)^{3} \), primero simplificaremos la expresión dentro del paréntesis y luego elevaremos al cubo el resultado. 1. Simplificamos la expresión dentro del paréntesis: \( x^{\frac{1}{2}}+x^{\frac{1}{4}}-1 \) 2. Elevamos al cubo el resultado: \( (x^{\frac{1}{2}}+x^{\frac{1}{4}}-1)^{3} \) Vamos a simplificar la expresión paso a paso. Simplify the expression by following steps: - step0: Solution: \(\left(x^{\frac{1}{2}}+x^{\frac{1}{4}}-1\right)^{3}\) - step1: Simplify: \(\left(\sqrt{x}+\sqrt[4]{x}-1\right)^{3}\) - step2: Expand the expression: \(\left(\sqrt{x}\right)^{3}+\left(\sqrt[4]{x}\right)^{3}+\left(-1\right)^{3}+3\left(\sqrt{x}\right)^{2}\sqrt[4]{x}+3\left(\sqrt{x}\right)^{2}\left(-1\right)+3\left(\sqrt[4]{x}\right)^{2}\sqrt{x}+3\left(\sqrt[4]{x}\right)^{2}\left(-1\right)+3\left(-1\right)^{2}\sqrt{x}+3\left(-1\right)^{2}\sqrt[4]{x}+6\sqrt{x}\times \sqrt[4]{x}\times \left(-1\right)\) - step3: Calculate: \(x\sqrt{x}+\sqrt[4]{x^{3}}-1+3x\sqrt[4]{x}-3x+3x-3\sqrt{x}+3\sqrt{x}+3\sqrt[4]{x}-6\sqrt[4]{x^{3}}\) - step4: Subtract the terms: \(x\sqrt{x}-5\sqrt[4]{x^{3}}-1+3x\sqrt[4]{x}+3\sqrt[4]{x}\) La expresión \( \left(x^{\frac{1}{2}}+x^{\frac{1}{4}}-1\right)^{3} \) se simplifica a \( x\sqrt{x}-5\sqrt[4]{x^{3}}-1+3x\sqrt[4]{x}+3\sqrt[4]{x} \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To expand the expression \( \left(x^{\frac{1}{2}}+x^{\frac{1}{4}}-1\right)^{3} \), you can use the Binomial Theorem, which states that \( (a + b + c)^n \) can be expanded using combinations of the terms raised to various powers. For our expression, we can let \( a = x^{\frac{1}{2}} \), \( b = x^{\frac{1}{4}} \), and \( c = -1 \), and we'll expand it as: \[ (a + b + c)^3 = \sum_{i+j+k=3} \frac{3!}{i!j!k!} a^i b^j c^k \] Calculating this for all combinations \( i+j+k=3 \): 1. \( (3, 0, 0) \): \( (x^{\frac{1}{2}})^3 = x^{\frac{3}{2}} \) 2. \( (2, 1, 0) \): \( 3 \cdot (x^{\frac{1}{2}})^2 \cdot (x^{\frac{1}{4}}) = 3x^{1}x^{\frac{1}{4}} = 3x^{\frac{5}{4}} \) 3. \( (2, 0, 1) \): \( 3 \cdot (x^{\frac{1}{2}})^2 \cdot (-1) = -3x^{1} = -3x \) 4. \( (1, 2, 0) \): \( 3 \cdot (x^{\frac{1}{2}})(x^{\frac{1}{4}})^2 = 3x^{\frac{1}{2}}x^{\frac{1}{2}} = 3x^{1} \) 5. \( (1, 1, 1) \): \( 6 \cdot (x^{\frac{1}{2}})(x^{\frac{1}{4}})(-1) = -6x^{\frac{3}{4}} \) 6. \( (1, 0, 2) \): \( 3 \cdot (x^{\frac{1}{2}})(-1)^2 = 3x^{\frac{1}{2}} \) 7. \( (0, 3, 0) \): \( (x^{\frac{1}{4}})^3 = x^{\frac{3}{4}} \) 8. \( (0, 2, 1) \): \( 3 \cdot (x^{\frac{1}{4}})^2(-1) = -3x^{\frac{1}{2}} \) 9. \( (0, 1, 2) \): \( 3 \cdot (x^{\frac{1}{4}})(-1)^2 = 3x^{\frac{1}{4}} \) 10. \( (0, 0, 3) \): \( (-1)^3 = -1 \) Now we group all these terms, combining where necessary: - From \( (3,0,0) \): \( x^{\frac{3}{2}} \) - From \( (2,1,0) \) and \( (1,2,0) \): \( 3x^{\frac{5}{4}} - 3x^{1} + 3x^{1} = 3x^{\frac{5}{4}} \) - From \( (1,1,1) \): \( -6x^{\frac{3}{4}} \) - From \( (0,2,1) \): \( -3x^{\frac{1}{2}} \) - From \( (0,1,2) \): \( 3x^{\frac{1}{4}} \) - From \( (0,0,3) \): \( -1 \) So, combining all the results, we ultimately find: \[ \left(x^{\frac{1}{2}}+x^{\frac{1}{4}}-1\right)^{3} = x^{\frac{3}{2}} + 3x^{\frac{5}{4}} - 6x^{\frac{3}{4}} - 3x^{\frac{1}{2}} + 3x^{\frac{1}{4}} - 1 \] This is the expanded form of the given expression.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy