Question
upstudy study bank question image url

Let \( f(x)=2 x+2 \) and \( g(x)=3 x^{2}+2 x \) After simplifying, \( (f \circ g)(x)= \)

Ask by Cole Hills. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

(f ∘ g)(x) = 6x² + 4x + 2

Solution

To find (f ∘ g)(x), we first substitute g(x) into f(x): 1. Write down f(x) = 2x + 2. 2. Substitute g(x) = 3x² + 2x for x in f(x):   f(g(x)) = 2(3x² + 2x) + 2. 3. Distribute the 2:   = 6x² + 4x + 2. Thus, the simplified expression is (f ∘ g)(x) = 6x² + 4x + 2.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To find \( (f \circ g)(x) \), we need to substitute \( g(x) \) into \( f(x) \). Therefore: 1. Start with \( g(x) = 3x^{2} + 2x \). 2. Substitute \( g(x) \) into \( f(x) \): \[ f(g(x)) = f(3x^{2} + 2x) = 2(3x^{2} + 2x) + 2. \] 3. Now, simplify: \[ = 6x^{2} + 4x + 2. \] Thus, \( (f \circ g)(x) = 6x^{2} + 4x + 2 \). --- For a bit of historical context, function composition has roots in the early development of mathematics, with significant contributions from mathematicians like Gottfried Wilhelm Leibniz and Joseph Fourier, who helped formalize functions and their compositions in calculus. Did you know that composition of functions is widely used in computer science? It allows programmers to build complex operations by combining simpler functions, making code more modular and easier to manage. This principle can be observed in functional programming languages, where functions can be easily composed to process data streams!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy