Given two functions \( f(x)=4 \cdot 2^{x} \) and \( g(x)=4 \cdot 5^{x} \), find and simplify the following: a) \( (f g)(x)=\square \) b) \( \left(\frac{f}{g}\right)(x)=\square \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To find the products and quotients of the functions \( f(x) \) and \( g(x) \), let's start with each calculation. a) The product of \( f(x) \) and \( g(x) \) is: \[ (f g)(x) = f(x) \cdot g(x) = (4 \cdot 2^{x}) \cdot (4 \cdot 5^{x}) = 16 \cdot 2^{x} \cdot 5^{x} \] We can combine \( 2^x \cdot 5^x \) into a single exponential term: \[ = 16 \cdot (2 \cdot 5)^{x} = 16 \cdot 10^{x} \] So, \[ (f g)(x) = 16 \cdot 10^{x} \] b) The quotient of \( f(x) \) by \( g(x) \) is: \[ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{4 \cdot 2^{x}}{4 \cdot 5^{x}} = \frac{2^{x}}{5^{x}} \] This can be simplified as: \[ = \left(\frac{2}{5}\right)^{x} \] Thus, the final results are: \[ (f g)(x) = 16 \cdot 10^{x} \] \[ \left(\frac{f}{g}\right)(x) = \left(\frac{2}{5}\right)^{x} \]