Answer
1. **Geometric Sequence:**
- Common ratio (\( r \)): 3 or -3
- First term (\( a \)): 2
2. **Arithmetic Sequence:**
- General term (\( T_n \)): \( 113 - 3(n-1) \)
3. **Quadratic Number Pattern:**
- No solution exists for the values of \( x \) and \( y \) based on the provided terms.
Solution
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}a+19d=56\\a+d=110\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}a=56-19d\\a+d=110\end{array}\right.\)
- step2: Substitute the value of \(a:\)
\(56-19d+d=110\)
- step3: Add the terms:
\(56-18d=110\)
- step4: Move the constant to the right side:
\(-18d=110-56\)
- step5: Subtract the numbers:
\(-18d=54\)
- step6: Change the signs:
\(18d=-54\)
- step7: Divide both sides:
\(\frac{18d}{18}=\frac{-54}{18}\)
- step8: Divide the numbers:
\(d=-3\)
- step9: Substitute the value of \(d:\)
\(a=56-19\left(-3\right)\)
- step10: Simplify:
\(a=113\)
- step11: Calculate:
\(\left\{ \begin{array}{l}a=113\\d=-3\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}a=113\\d=-3\end{array}\right.\)
- step13: Rewrite:
\(\left(a,d\right) = \left(113,-3\right)\)
Solve the system of equations \( a r^2 = 18; a r^4 = 162 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}ar^{2}=18\\ar^{4}=162\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}a=\frac{18}{r^{2}}\\ar^{4}=162\end{array}\right.\)
- step2: Substitute the value of \(a:\)
\(\frac{18}{r^{2}}\times r^{4}=162\)
- step3: Reduce the fraction:
\(18r^{2}=162\)
- step4: Divide both sides:
\(\frac{18r^{2}}{18}=\frac{162}{18}\)
- step5: Divide the numbers:
\(r^{2}=9\)
- step6: Simplify the expression:
\(r=\pm \sqrt{9}\)
- step7: Simplify:
\(r=\pm 3\)
- step8: Separate into possible cases:
\(r=3\cup r=-3\)
- step9: Rearrange the terms:
\(\left\{ \begin{array}{l}a=\frac{18}{r^{2}}\\r=3\end{array}\right.\cup \left\{ \begin{array}{l}a=\frac{18}{r^{2}}\\r=-3\end{array}\right.\)
- step10: Calculate:
\(\left\{ \begin{array}{l}a=2\\r=3\end{array}\right.\cup \left\{ \begin{array}{l}a=2\\r=-3\end{array}\right.\)
- step11: Calculate:
\(\left\{ \begin{array}{l}a=2\\r=-3\end{array}\right.\cup \left\{ \begin{array}{l}a=2\\r=3\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}a=2\\r=-3\end{array}\right.\cup \left\{ \begin{array}{l}a=2\\r=3\end{array}\right.\)
- step13: Rewrite:
\(\left(a,r\right) = \left(2,-3\right)\cup \left(a,r\right) = \left(2,3\right)\)
Solve the system of equations \( x^2 + bx + c = -12; x^2 + bx + c = y; x^2 + bx + c = 3; x^2 + bx + c = 15 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x^{2}+bx+c=-12\\x^{2}+bx+c=y\\x^{2}+bx+c=3\\x^{2}+bx+c=15\end{array}\right.\)
- step1: Rewrite the expression:
\(\left\{ \begin{array}{l}x^{2}+bx+c=-12\\y=x^{2}+bx+c\\x^{2}+bx+c=3\\x^{2}+bx+c=15\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(\left\{ \begin{array}{l}x^{2}+bx+c=-12\\x^{2}+bx+c=3\\x^{2}+bx+c=15\end{array}\right.\)
- step3: Solve the equation:
\(\left\{ \begin{array}{l}c=-12-x^{2}-bx\\x^{2}+bx+c=3\\x^{2}+bx+c=15\end{array}\right.\)
- step4: Substitute the value of \(c:\)
\(\left\{ \begin{array}{l}x^{2}+bx-12-x^{2}-bx=3\\x^{2}+bx-12-x^{2}-bx=15\end{array}\right.\)
- step5: Simplify:
\(\left\{ \begin{array}{l}-12=3\\-12=15\end{array}\right.\)
- step6: Calculate:
\(\left\{ \begin{array}{l}b \in \varnothing \\c \in \varnothing \\x \in \varnothing \\y \in \varnothing \end{array}\right.\)
- step7: Rewrite:
\((b, c, x, y) \in \varnothing\)
Let's solve each part of your problem step by step.
### 1. Geometric Sequence
We know:
- The third term \( T_3 = a r^2 = 18 \)
- The fifth term \( T_5 = a r^4 = 162 \)
We can set up the equations:
1. \( a r^2 = 18 \)
2. \( a r^4 = 162 \)
To find \( a \) and \( r \), we can divide the second equation by the first:
\[
\frac{a r^4}{a r^2} = \frac{162}{18}
\]
This simplifies to:
\[
r^2 = 9 \implies r = 3 \text{ or } r = -3
\]
Now, substituting \( r \) back into the first equation to find \( a \):
1. If \( r = 3 \):
\[
a (3^2) = 18 \implies a \cdot 9 = 18 \implies a = 2
\]
2. If \( r = -3 \):
\[
a (-3^2) = 18 \implies a \cdot 9 = 18 \implies a = 2
\]
Thus, the solutions are:
- \( (a, r) = (2, 3) \)
- \( (a, r) = (2, -3) \)
### 2. Arithmetic Sequence
We know:
- The second term \( T_2 = a + d = 110 \)
- The twentieth term \( T_{20} = a + 19d = 56 \)
Setting up the equations:
1. \( a + d = 110 \)
2. \( a + 19d = 56 \)
Subtract the first equation from the second:
\[
(a + 19d) - (a + d) = 56 - 110
\]
\[
18d = -54 \implies d = -3
\]
Now substitute \( d \) back into the first equation:
\[
a - 3 = 110 \implies a = 113
\]
Thus, the general term \( T_n \) can be expressed as:
\[
T_n = a + (n-1)d = 113 + (n-1)(-3) = 113 - 3(n-1)
\]
### 3. Quadratic Number Pattern
The first five terms are given as:
- \( T_1 = -12 \)
- \( T_2 = y \)
- \( T_3 = 3 \)
- \( T_4 = 15 \)
Assuming a quadratic pattern, we can express the terms as:
\[
T_n = an^2 + bn + c
\]
Setting up the equations based on the known terms:
1. \( a(1^2) + b(1) + c = -12 \)
2. \( a(2^2) + b(2) + c = y \)
3. \( a(3^2) + b(3) + c = 3 \)
4. \( a(4^2) + b(4) + c = 15 \)
However, the results indicate that there is no solution for the quadratic pattern based on the provided terms. This suggests that the terms do not fit a quadratic sequence.
### Summary of Results
1. For the geometric sequence: \( (a, r) = (2, 3) \) or \( (2, -3) \)
2. For the arithmetic sequence: \( T_n = 113 - 3(n-1) \)
3. For the quadratic pattern: No solution exists for the values of \( x \) and \( y \) based on the provided terms.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution