Question
upstudy study bank question image url

Find the least common denominator of \( \frac{2}{7 x-14} \) and \( \frac{x}{3 x-6} \) \( \square \)

Ask by Bond Dickson. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The least common denominator is 21(x – 2).

Solution

To find the least common denominator (LCD) for the fractions 2/(7x – 14) and x/(3x – 6), follow these steps: 1. Factor each denominator:   • 7x – 14 factors as 7(x – 2)   • 3x – 6 factors as 3(x – 2) 2. The LCD must include each distinct factor at its highest power appearing in any of the denominators. The factors are 7, 3, and (x – 2). 3. Multiply these factors:   LCD = 7 × 3 × (x – 2) = 21(x – 2) Thus, the least common denominator is 21(x – 2).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To find the least common denominator (LCD) of the fractions \( \frac{2}{7x-14} \) and \( \frac{x}{3x-6} \), we first need to factor the denominators. The first denominator \( 7x - 14 \) can be factored as: \[ 7(x - 2) \] The second denominator \( 3x - 6 \) can be factored as: \[ 3(x - 2) \] Now, we identify the factors from both denominators: - From \( 7(x-2) \), we have \( 7 \) and \( (x-2) \). - From \( 3(x-2) \), we have \( 3 \) and also \( (x-2) \). To find the LCD, we take the highest power of each unique factor: - The highest power of \( 7 \) is \( 7^1 \). - The highest power of \( 3 \) is \( 3^1 \). - The factor \( (x - 2) \) appears in both denominators, so we take \( (x - 2)^1 \). Thus, the least common denominator is: \[ LCD = 7 \times 3 \times (x - 2) = 21(x - 2) \] So the least common denominator of \( \frac{2}{7x-14} \) and \( \frac{x}{3x-6} \) is \( 21(x - 2) \).

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy