Answer
- **3.1**: \( (a - b + 3)(a - b) \)
- **3.2**: \( (m - n)(m + n)(m - 1 - n) \)
- **4**: \( \frac{9x^{2} + 30x + 9}{12x^{5} + 37x^{3} + 12x^{2} - 10x - 3} \)
Solution
Factor the expression by following steps:
- step0: Factor:
\(\left(a-b\right)^{2}-3\left(b-a\right)\)
- step1: Factor the expression:
\(\left(a-b+3\right)\left(a-b\right)\)
Calculate or simplify the expression \( \frac{4 x^{\prime}-1}{3 x^{3}+10 x+3} \div \frac{6 x^{2}+5 x+1}{4 x^{2}+11 x-3} \times \frac{9 x^{2}+6 x+1}{8 x^{2}-6 x+1} \).
Evaluate the derivative by following steps:
- step0: Solution:
\(\frac{4\times \left(x\right)^{\prime}-1}{3x^{3}+10x+3}\div \frac{6x^{2}+5x+1}{4x^{2}+11x-3}\times \frac{9x^{2}+6x+1}{8x^{2}-6x+1}\)
- step1: Find the derivative:
\(\frac{4\times 1-1}{3x^{3}+10x+3}\div \frac{6x^{2}+5x+1}{4x^{2}+11x-3}\times \frac{9x^{2}+6x+1}{8x^{2}-6x+1}\)
- step2: Multiply:
\(\frac{4-1}{3x^{3}+10x+3}\div \frac{6x^{2}+5x+1}{4x^{2}+11x-3}\times \frac{9x^{2}+6x+1}{8x^{2}-6x+1}\)
- step3: Subtract the numbers:
\(\frac{3}{3x^{3}+10x+3}\div \frac{6x^{2}+5x+1}{4x^{2}+11x-3}\times \frac{9x^{2}+6x+1}{8x^{2}-6x+1}\)
- step4: Multiply by the reciprocal:
\(\frac{3}{3x^{3}+10x+3}\times \frac{4x^{2}+11x-3}{6x^{2}+5x+1}\times \frac{9x^{2}+6x+1}{8x^{2}-6x+1}\)
- step5: Multiply the terms:
\(\frac{3\left(4x^{2}+11x-3\right)}{\left(3x^{3}+10x+3\right)\left(6x^{2}+5x+1\right)}\times \frac{9x^{2}+6x+1}{8x^{2}-6x+1}\)
- step6: Rewrite the expression:
\(\frac{3\left(4x-1\right)\left(x+3\right)}{\left(3x^{3}+10x+3\right)\left(6x^{2}+5x+1\right)}\times \frac{9x^{2}+6x+1}{\left(4x-1\right)\left(2x-1\right)}\)
- step7: Reduce the fraction:
\(\frac{3\left(x+3\right)}{\left(3x^{3}+10x+3\right)\left(6x^{2}+5x+1\right)}\times \frac{9x^{2}+6x+1}{2x-1}\)
- step8: Rewrite the expression:
\(\frac{3\left(x+3\right)}{\left(3x^{3}+10x+3\right)\left(3x+1\right)\left(2x+1\right)}\times \frac{\left(3x+1\right)^{2}}{2x-1}\)
- step9: Reduce the fraction:
\(\frac{3\left(x+3\right)}{\left(3x^{3}+10x+3\right)\left(2x+1\right)}\times \frac{3x+1}{2x-1}\)
- step10: Multiply the terms:
\(\frac{3\left(x+3\right)\left(3x+1\right)}{\left(3x^{3}+10x+3\right)\left(2x+1\right)\left(2x-1\right)}\)
- step11: Calculate:
\(\frac{9x^{2}+30x+9}{12x^{5}+37x^{3}+12x^{2}-10x-3}\)
Let's go through the problems step by step.
### Question 3.1
We need to factor the expression \( (a-b)^{2}-3(b-a) \).
1. **Rewrite \( b-a \)**: Notice that \( b-a = -(a-b) \). Therefore, we can rewrite the expression as:
\[
(a-b)^{2} - 3(-1)(a-b) = (a-b)^{2} + 3(a-b)
\]
2. **Factor out \( (a-b) \)**:
\[
(a-b)((a-b) + 3) = (a-b)(a-b+3)
\]
Thus, the completely factored form is:
\[
(a-b+3)(a-b)
\]
### Question 3.2
We need to factor the expression \( m^{3}-m^{2}-n m^{2}-n^{2} \).
1. **Group the terms**:
\[
m^{3} - m^{2} - n m^{2} - n^{2} = m^{2}(m - 1 - n) - n^{2}
\]
2. **Notice that this is a difference of squares**:
\[
= m^{2}(m - 1 - n) - n^{2} = (m^{2} - n^{2})(m - 1 - n)
\]
3. **Factor the difference of squares**:
\[
= (m - n)(m + n)(m - 1 - n)
\]
However, I encountered an error while trying to factor this expression completely. Let's focus on the first part, which is \( m^{2} - n^{2} \).
### Question 4
We need to simplify the expression:
\[
\frac{4 x^{\prime}-1}{3 x^{3}+10 x+3} \div \frac{6 x^{2}+5 x+1}{4 x^{2}+11 x-3} \times \frac{9 x^{2}+6 x+1}{8 x^{2}-6 x+1}
\]
The simplified result is:
\[
\frac{9x^{2}+30x+9}{12x^{5}+37x^{3}+12x^{2}-10x-3}
\]
### Summary of Results
- **3.1**: The factored form is \( (a-b+3)(a-b) \).
- **3.2**: The expression could not be factored completely, but we have \( (m - n)(m + n)(m - 1 - n) \) as part of the factorization.
- **4**: The simplified expression is \( \frac{9x^{2}+30x+9}{12x^{5}+37x^{3}+12x^{2}-10x-3} \).
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution