Question
upstudy study bank question image url

f. \( \quad 3 \frac{1}{4}+2 \frac{1}{6}-2 \frac{3}{8}= \) h. \( 8 \frac{1}{6}-2 \frac{8}{9}+1 \frac{1}{2}= \) j. \( \quad 8 \frac{3}{10}+\left(2 \frac{5}{6}-1 \frac{4}{5}\right)= \)

Ask by Hamilton Mckenzie. in South Africa
Feb 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

f. \( 3 \frac{1}{24} \) h. \( 6 \frac{7}{9} \) j. \( 9 \frac{1}{3} \)

Solution

Calculate the value by following steps: - step0: Calculate: \(8+\frac{1}{6}-2-\frac{8}{9}+1+\frac{1}{2}\) - step1: Calculate: \(7+\frac{1}{6}-\frac{8}{9}+\frac{1}{2}\) - step2: Reduce fractions to a common denominator: \(\frac{7\times 6\times 3}{6\times 3}+\frac{3}{6\times 3}-\frac{8\times 2}{9\times 2}+\frac{9}{2\times 9}\) - step3: Multiply the numbers: \(\frac{7\times 6\times 3}{18}+\frac{3}{6\times 3}-\frac{8\times 2}{9\times 2}+\frac{9}{2\times 9}\) - step4: Multiply the numbers: \(\frac{7\times 6\times 3}{18}+\frac{3}{18}-\frac{8\times 2}{9\times 2}+\frac{9}{2\times 9}\) - step5: Multiply the numbers: \(\frac{7\times 6\times 3}{18}+\frac{3}{18}-\frac{8\times 2}{18}+\frac{9}{2\times 9}\) - step6: Multiply the numbers: \(\frac{7\times 6\times 3}{18}+\frac{3}{18}-\frac{8\times 2}{18}+\frac{9}{18}\) - step7: Transform the expression: \(\frac{7\times 6\times 3+3-8\times 2+9}{18}\) - step8: Multiply the terms: \(\frac{126+3-8\times 2+9}{18}\) - step9: Multiply the numbers: \(\frac{126+3-16+9}{18}\) - step10: Calculate: \(\frac{122}{18}\) - step11: Reduce the fraction: \(\frac{61}{9}\) Calculate or simplify the expression \( 3 + 1/4 + 2 - 1/6 - 2 - 3/8 \). Calculate the value by following steps: - step0: Calculate: \(3+\frac{1}{4}+2-\frac{1}{6}-2-\frac{3}{8}\) - step1: Simplify: \(3+\frac{1}{4}-\frac{1}{6}-\frac{3}{8}\) - step2: Reduce fractions to a common denominator: \(\frac{3\times 4\times 3\times 2}{4\times 3\times 2}+\frac{3\times 2}{4\times 3\times 2}-\frac{2\times 2}{6\times 2\times 2}-\frac{3\times 3}{8\times 3}\) - step3: Multiply the terms: \(\frac{3\times 4\times 3\times 2}{24}+\frac{3\times 2}{4\times 3\times 2}-\frac{2\times 2}{6\times 2\times 2}-\frac{3\times 3}{8\times 3}\) - step4: Multiply the terms: \(\frac{3\times 4\times 3\times 2}{24}+\frac{3\times 2}{24}-\frac{2\times 2}{6\times 2\times 2}-\frac{3\times 3}{8\times 3}\) - step5: Multiply the terms: \(\frac{3\times 4\times 3\times 2}{24}+\frac{3\times 2}{24}-\frac{2\times 2}{24}-\frac{3\times 3}{8\times 3}\) - step6: Multiply the numbers: \(\frac{3\times 4\times 3\times 2}{24}+\frac{3\times 2}{24}-\frac{2\times 2}{24}-\frac{3\times 3}{24}\) - step7: Transform the expression: \(\frac{3\times 4\times 3\times 2+3\times 2-2\times 2-3\times 3}{24}\) - step8: Multiply the terms: \(\frac{72+3\times 2-2\times 2-3\times 3}{24}\) - step9: Multiply the numbers: \(\frac{72+6-2\times 2-3\times 3}{24}\) - step10: Multiply the numbers: \(\frac{72+6-4-3\times 3}{24}\) - step11: Multiply the numbers: \(\frac{72+6-4-9}{24}\) - step12: Calculate: \(\frac{65}{24}\) Calculate or simplify the expression \( 8 + 3/10 + (2 + 5/6 - 1 - 4/5) \). Calculate the value by following steps: - step0: Calculate: \(8+\frac{3}{10}+\left(2+\frac{5}{6}-1-\frac{4}{5}\right)\) - step1: Calculate: \(8+\frac{3}{10}+\frac{31}{30}\) - step2: Reduce fractions to a common denominator: \(\frac{8\times 10\times 3}{10\times 3}+\frac{3\times 3}{10\times 3}+\frac{31}{30}\) - step3: Multiply the numbers: \(\frac{8\times 10\times 3}{30}+\frac{3\times 3}{10\times 3}+\frac{31}{30}\) - step4: Multiply the numbers: \(\frac{8\times 10\times 3}{30}+\frac{3\times 3}{30}+\frac{31}{30}\) - step5: Transform the expression: \(\frac{8\times 10\times 3+3\times 3+31}{30}\) - step6: Multiply the terms: \(\frac{240+3\times 3+31}{30}\) - step7: Multiply the numbers: \(\frac{240+9+31}{30}\) - step8: Add the numbers: \(\frac{280}{30}\) - step9: Reduce the fraction: \(\frac{28}{3}\) Let's solve each of the expressions step by step. ### f. \( 3 \frac{1}{4} + 2 \frac{1}{6} - 2 \frac{3}{8} \) 1. Convert mixed numbers to improper fractions: - \( 3 \frac{1}{4} = \frac{13}{4} \) - \( 2 \frac{1}{6} = \frac{13}{6} \) - \( 2 \frac{3}{8} = \frac{19}{8} \) 2. Find a common denominator for \( \frac{13}{4} \), \( \frac{13}{6} \), and \( \frac{19}{8} \). The least common multiple of 4, 6, and 8 is 24. 3. Convert each fraction: - \( \frac{13}{4} = \frac{78}{24} \) - \( \frac{13}{6} = \frac{52}{24} \) - \( \frac{19}{8} = \frac{57}{24} \) 4. Now substitute back into the expression: \[ \frac{78}{24} + \frac{52}{24} - \frac{57}{24} = \frac{78 + 52 - 57}{24} = \frac{73}{24} \] 5. Convert to a mixed number: \[ \frac{73}{24} = 3 \frac{1}{24} \] ### h. \( 8 \frac{1}{6} - 2 \frac{8}{9} + 1 \frac{1}{2} \) 1. Convert mixed numbers to improper fractions: - \( 8 \frac{1}{6} = \frac{49}{6} \) - \( 2 \frac{8}{9} = \frac{26}{9} \) - \( 1 \frac{1}{2} = \frac{3}{2} \) 2. Find a common denominator for \( \frac{49}{6} \), \( \frac{26}{9} \), and \( \frac{3}{2} \). The least common multiple of 6, 9, and 2 is 18. 3. Convert each fraction: - \( \frac{49}{6} = \frac{147}{18} \) - \( \frac{26}{9} = \frac{52}{18} \) - \( \frac{3}{2} = \frac{27}{18} \) 4. Now substitute back into the expression: \[ \frac{147}{18} - \frac{52}{18} + \frac{27}{18} = \frac{147 - 52 + 27}{18} = \frac{122}{18} \] 5. Simplify: \[ \frac{122}{18} = 6 \frac{7}{9} \] ### j. \( 8 \frac{3}{10} + \left(2 \frac{5}{6} - 1 \frac{4}{5}\right) \) 1. Convert mixed numbers to improper fractions: - \( 8 \frac{3}{10} = \frac{83}{10} \) - \( 2 \frac{5}{6} = \frac{17}{6} \) - \( 1 \frac{4}{5} = \frac{9}{5} \) 2. Find a common denominator for \( \frac{17}{6} \) and \( \frac{9}{5} \). The least common multiple of 6 and 5 is 30. 3. Convert each fraction: - \( \frac{17}{6} = \frac{85}{30} \) - \( \frac{9}{5} = \frac{54}{30} \) 4. Now substitute back into the expression: \[ 8 \frac{3}{10} + \left(\frac{85}{30} - \frac{54}{30}\right) = \frac{83}{10} + \frac{31}{30} \] 5. Convert \( \frac{83}{10} \) to have a common denominator of 30: \[ \frac{83}{10} = \frac{249}{30} \] 6. Now combine: \[ \frac{249}{30} + \frac{31}{30} = \frac{280}{30} = 9 \frac{1}{3} \] ### Final Answers: - f. \( 3 \frac{1}{24} \) - h. \( 6 \frac{7}{9} \) - j. \( 9 \frac{1}{3} \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

First, let’s talk about the history of fractions. The concept of fractions dates back to ancient Egypt, where scribes used them as early as 1800 BC. They had a unique way of writing fractions based on unit fractions (like 1/2, 1/3) which were combined to represent other fractions. It’s fascinating how this mathematical idea evolved over centuries and continues to be fundamental in various fields today! Now, when it comes to real-world applications of adding and subtracting fractions, they are all around us! Whether you’re cooking and need to adjust a recipe, budgeting expenses, or even sharing a pizza, fractions come into play. Understanding how to manipulate fractions makes everyday tasks much simpler. You’ll impress your friends and family with your cooking precision or budgeting skills!

Related Questions

Latest Arithmetic Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy