Answer
f. \( 3 \frac{1}{24} \)
h. \( 6 \frac{7}{9} \)
j. \( 9 \frac{1}{3} \)
Solution
Calculate the value by following steps:
- step0: Calculate:
\(8+\frac{1}{6}-2-\frac{8}{9}+1+\frac{1}{2}\)
- step1: Calculate:
\(7+\frac{1}{6}-\frac{8}{9}+\frac{1}{2}\)
- step2: Reduce fractions to a common denominator:
\(\frac{7\times 6\times 3}{6\times 3}+\frac{3}{6\times 3}-\frac{8\times 2}{9\times 2}+\frac{9}{2\times 9}\)
- step3: Multiply the numbers:
\(\frac{7\times 6\times 3}{18}+\frac{3}{6\times 3}-\frac{8\times 2}{9\times 2}+\frac{9}{2\times 9}\)
- step4: Multiply the numbers:
\(\frac{7\times 6\times 3}{18}+\frac{3}{18}-\frac{8\times 2}{9\times 2}+\frac{9}{2\times 9}\)
- step5: Multiply the numbers:
\(\frac{7\times 6\times 3}{18}+\frac{3}{18}-\frac{8\times 2}{18}+\frac{9}{2\times 9}\)
- step6: Multiply the numbers:
\(\frac{7\times 6\times 3}{18}+\frac{3}{18}-\frac{8\times 2}{18}+\frac{9}{18}\)
- step7: Transform the expression:
\(\frac{7\times 6\times 3+3-8\times 2+9}{18}\)
- step8: Multiply the terms:
\(\frac{126+3-8\times 2+9}{18}\)
- step9: Multiply the numbers:
\(\frac{126+3-16+9}{18}\)
- step10: Calculate:
\(\frac{122}{18}\)
- step11: Reduce the fraction:
\(\frac{61}{9}\)
Calculate or simplify the expression \( 3 + 1/4 + 2 - 1/6 - 2 - 3/8 \).
Calculate the value by following steps:
- step0: Calculate:
\(3+\frac{1}{4}+2-\frac{1}{6}-2-\frac{3}{8}\)
- step1: Simplify:
\(3+\frac{1}{4}-\frac{1}{6}-\frac{3}{8}\)
- step2: Reduce fractions to a common denominator:
\(\frac{3\times 4\times 3\times 2}{4\times 3\times 2}+\frac{3\times 2}{4\times 3\times 2}-\frac{2\times 2}{6\times 2\times 2}-\frac{3\times 3}{8\times 3}\)
- step3: Multiply the terms:
\(\frac{3\times 4\times 3\times 2}{24}+\frac{3\times 2}{4\times 3\times 2}-\frac{2\times 2}{6\times 2\times 2}-\frac{3\times 3}{8\times 3}\)
- step4: Multiply the terms:
\(\frac{3\times 4\times 3\times 2}{24}+\frac{3\times 2}{24}-\frac{2\times 2}{6\times 2\times 2}-\frac{3\times 3}{8\times 3}\)
- step5: Multiply the terms:
\(\frac{3\times 4\times 3\times 2}{24}+\frac{3\times 2}{24}-\frac{2\times 2}{24}-\frac{3\times 3}{8\times 3}\)
- step6: Multiply the numbers:
\(\frac{3\times 4\times 3\times 2}{24}+\frac{3\times 2}{24}-\frac{2\times 2}{24}-\frac{3\times 3}{24}\)
- step7: Transform the expression:
\(\frac{3\times 4\times 3\times 2+3\times 2-2\times 2-3\times 3}{24}\)
- step8: Multiply the terms:
\(\frac{72+3\times 2-2\times 2-3\times 3}{24}\)
- step9: Multiply the numbers:
\(\frac{72+6-2\times 2-3\times 3}{24}\)
- step10: Multiply the numbers:
\(\frac{72+6-4-3\times 3}{24}\)
- step11: Multiply the numbers:
\(\frac{72+6-4-9}{24}\)
- step12: Calculate:
\(\frac{65}{24}\)
Calculate or simplify the expression \( 8 + 3/10 + (2 + 5/6 - 1 - 4/5) \).
Calculate the value by following steps:
- step0: Calculate:
\(8+\frac{3}{10}+\left(2+\frac{5}{6}-1-\frac{4}{5}\right)\)
- step1: Calculate:
\(8+\frac{3}{10}+\frac{31}{30}\)
- step2: Reduce fractions to a common denominator:
\(\frac{8\times 10\times 3}{10\times 3}+\frac{3\times 3}{10\times 3}+\frac{31}{30}\)
- step3: Multiply the numbers:
\(\frac{8\times 10\times 3}{30}+\frac{3\times 3}{10\times 3}+\frac{31}{30}\)
- step4: Multiply the numbers:
\(\frac{8\times 10\times 3}{30}+\frac{3\times 3}{30}+\frac{31}{30}\)
- step5: Transform the expression:
\(\frac{8\times 10\times 3+3\times 3+31}{30}\)
- step6: Multiply the terms:
\(\frac{240+3\times 3+31}{30}\)
- step7: Multiply the numbers:
\(\frac{240+9+31}{30}\)
- step8: Add the numbers:
\(\frac{280}{30}\)
- step9: Reduce the fraction:
\(\frac{28}{3}\)
Let's solve each of the expressions step by step.
### f. \( 3 \frac{1}{4} + 2 \frac{1}{6} - 2 \frac{3}{8} \)
1. Convert mixed numbers to improper fractions:
- \( 3 \frac{1}{4} = \frac{13}{4} \)
- \( 2 \frac{1}{6} = \frac{13}{6} \)
- \( 2 \frac{3}{8} = \frac{19}{8} \)
2. Find a common denominator for \( \frac{13}{4} \), \( \frac{13}{6} \), and \( \frac{19}{8} \). The least common multiple of 4, 6, and 8 is 24.
3. Convert each fraction:
- \( \frac{13}{4} = \frac{78}{24} \)
- \( \frac{13}{6} = \frac{52}{24} \)
- \( \frac{19}{8} = \frac{57}{24} \)
4. Now substitute back into the expression:
\[
\frac{78}{24} + \frac{52}{24} - \frac{57}{24} = \frac{78 + 52 - 57}{24} = \frac{73}{24}
\]
5. Convert to a mixed number:
\[
\frac{73}{24} = 3 \frac{1}{24}
\]
### h. \( 8 \frac{1}{6} - 2 \frac{8}{9} + 1 \frac{1}{2} \)
1. Convert mixed numbers to improper fractions:
- \( 8 \frac{1}{6} = \frac{49}{6} \)
- \( 2 \frac{8}{9} = \frac{26}{9} \)
- \( 1 \frac{1}{2} = \frac{3}{2} \)
2. Find a common denominator for \( \frac{49}{6} \), \( \frac{26}{9} \), and \( \frac{3}{2} \). The least common multiple of 6, 9, and 2 is 18.
3. Convert each fraction:
- \( \frac{49}{6} = \frac{147}{18} \)
- \( \frac{26}{9} = \frac{52}{18} \)
- \( \frac{3}{2} = \frac{27}{18} \)
4. Now substitute back into the expression:
\[
\frac{147}{18} - \frac{52}{18} + \frac{27}{18} = \frac{147 - 52 + 27}{18} = \frac{122}{18}
\]
5. Simplify:
\[
\frac{122}{18} = 6 \frac{7}{9}
\]
### j. \( 8 \frac{3}{10} + \left(2 \frac{5}{6} - 1 \frac{4}{5}\right) \)
1. Convert mixed numbers to improper fractions:
- \( 8 \frac{3}{10} = \frac{83}{10} \)
- \( 2 \frac{5}{6} = \frac{17}{6} \)
- \( 1 \frac{4}{5} = \frac{9}{5} \)
2. Find a common denominator for \( \frac{17}{6} \) and \( \frac{9}{5} \). The least common multiple of 6 and 5 is 30.
3. Convert each fraction:
- \( \frac{17}{6} = \frac{85}{30} \)
- \( \frac{9}{5} = \frac{54}{30} \)
4. Now substitute back into the expression:
\[
8 \frac{3}{10} + \left(\frac{85}{30} - \frac{54}{30}\right) = \frac{83}{10} + \frac{31}{30}
\]
5. Convert \( \frac{83}{10} \) to have a common denominator of 30:
\[
\frac{83}{10} = \frac{249}{30}
\]
6. Now combine:
\[
\frac{249}{30} + \frac{31}{30} = \frac{280}{30} = 9 \frac{1}{3}
\]
### Final Answers:
- f. \( 3 \frac{1}{24} \)
- h. \( 6 \frac{7}{9} \)
- j. \( 9 \frac{1}{3} \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution