Question
upstudy study bank question image url

3. An irregular lump of an unknown metal has a measured density of \( 2.97 \mathrm{~g} / \mathrm{mL} \). The metal is heated to a temperature of \( 173^{\circ} \mathrm{C} \) and placed in a graduated cylinder filled with 25.0 mL of water at \( 25.0^{\circ} \mathrm{C} \). After the system has reached thermal equilibrium, the volume in the cylinder is read at 34.0 mL , and the temperature is recorded as \( 40.6^{\circ} \mathrm{C} \). What is the specific heat of the unknown metal sample? Assume no heat is lost to the surroundings. What is the metal used in the experiment? Specific heat of water \( =4.184 \mathrm{~J} / \mathrm{g} \mathrm{C} \) Specific heat of granite \( =0.79 \mathrm{~J} / \mathrm{g} \mathrm{C} \) Specific heat of copper \( =0.38 \mathrm{~J} / \mathrm{g} \mathrm{C} \) Specific heat of iron \( =0.45 \mathrm{~J} / \mathrm{g} \mathrm{C} \) Specific heat of lead \( =0.13 \mathrm{~J} / \mathrm{g} \mathrm{C} \)

Ask by Brooks Watson. in the Philippines
Mar 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The metal's specific heat is approximately \( 0.46\,\text{J/(g}^\circ\text{C)} \), and it is identified as iron.

Solution

Let \[ m_{\text{metal}} \quad \text{= mass of the metal}, \] \[ c_{\text{metal}} \quad \text{= specific heat of the metal}, \] \[ T_{i,\text{metal}} = 173^\circ\text{C}, \quad T_{f} = 40.6^\circ\text{C}, \] \[ m_{\text{water}} = 25.0\text{ g} \quad (\text{since } 25.0\text{ mL of water} \approx 25.0\text{ g}), \] \[ c_{\text{water}} = 4.184\text{ J/(g}^\circ\text{C)}, \] \[ T_{i,\text{water}} = 25.0^\circ \text{C}. \] 1. **Find the volume and mass of the metal:** The metal is placed in a graduated cylinder initially containing 25.0 mL of water. After the metal is added, the final volume is 34.0 mL. The displaced water equals the metal’s volume: \[ V_{\text{metal}} = 34.0\text{ mL} - 25.0\text{ mL} = 9.0\text{ mL}. \] The density of the metal is given as \( \rho = 2.97 \text{ g/mL} \). Hence, the mass of the metal is \[ m_{\text{metal}} = \rho \times V_{\text{metal}} = 2.97 \text{ g/mL} \times 9.0 \text{ mL} = 26.73\text{ g}. \] 2. **Set Up the Energy Conservation Equation:** Assuming no heat is lost to the surroundings, the heat lost by the metal equals the heat gained by the water. That is, \[ m_{\text{metal}}\, c_{\text{metal}}\, (T_{i,\text{metal}} - T_f) = m_{\text{water}}\, c_{\text{water}}\, (T_f - T_{i,\text{water}}). \] 3. **Solve for \( c_{\text{metal}} \):** Rearranging gives \[ c_{\text{metal}} = \frac{m_{\text{water}}\, c_{\text{water}}\, (T_f - T_{i,\text{water}})}{m_{\text{metal}}\, (T_{i,\text{metal}} - T_f)}. \] Now substitute the given values: \[ c_{\text{metal}} = \frac{25.0\,\text{g} \times 4.184\,\text{J/(g}^\circ\text{C)} \times (40.6^\circ\text{C} - 25.0^\circ\text{C})}{26.73\,\text{g} \times (173^\circ\text{C} - 40.6^\circ\text{C})}. \] Calculate the temperature differences: \[ (T_f - T_{i,\text{water}}) = 40.6^\circ\text{C} - 25.0^\circ\text{C} = 15.6^\circ\text{C}, \] \[ (T_{i,\text{metal}} - T_f) = 173^\circ\text{C} - 40.6^\circ\text{C} = 132.4^\circ\text{C}. \] Then the numerator becomes \[ 25.0 \times 4.184 \times 15.6 \approx 25.0 \times 65.2704 \approx 1631.76\,\text{J}. \] The denominator is \[ 26.73 \times 132.4 \approx 3539.05\,\text{g}^\circ\text{C}. \] Thus, \[ c_{\text{metal}} \approx \frac{1631.76}{3539.05} \approx 0.461\,\text{J/(g}^\circ\text{C)}. \] 4. **Identify the Metal:** The computed specific heat of approximately \( 0.46\,\text{J/(g}^\circ\text{C)} \) is closest to the provided value for iron, which is \( 0.45\,\text{J/(g}^\circ\text{C)} \). Therefore, the unknown metal is identified as iron. \[ \boxed{c_{\text{metal}} \approx 0.46\,\text{J/(g}^\circ\text{C)} \quad \text{and the metal is iron.}} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To determine the specific heat of the unknown metal, we can use the principle of conservation of energy, where the heat lost by the metal equals the heat gained by the water. The mass of the water can be calculated as \( 25.0 \, \text{mL} \times 1 \, \text{g/mL} = 25.0 \, \text{g} \). The temperature change for the water is \( 40.6^\circ \mathrm{C} - 25.0^\circ \mathrm{C} = 15.6^\circ \mathrm{C} \). The heat gained by the water is: \[ Q_{\text{water}} = m_{\text{water}} \times c_{\text{water}} \times \Delta T_{\text{water}} \\ Q_{\text{water}} = 25.0 \, \text{g} \times 4.184 \, \text{J/g}\cdot\mathrm{C} \times 15.6 \, \mathrm{C} \\ Q_{\text{water}} = 1625.3 \, \text{J} \] Next, we can find the mass of the metal. The increase in volume caused by the metal placing it in water is \( 34.0\, \text{mL} - 25.0\, \text{mL} = 9.0\, \text{mL} \). The mass of the metal is: \[ m_{\text{metal}} = \text{Density} \times \text{Volume} = 2.97 \, \text{g/mL} \times 9.0 \, \text{mL} = 26.73 \, \text{g} \] Assuming no heat is lost, we can use the equations: \[ Q_{\text{metal}} = Q_{\text{water}} \] \[ m_{\text{metal}} \times c_{\text{metal}} \times \Delta T_{\text{metal}} = 1625.3 \, \text{J} \] The temperature change for the metal is \( 173^\circ \mathrm{C} - 40.6^\circ \mathrm{C} = 132.4^\circ \mathrm{C} \): \[ 26.73 \, \text{g} \times c_{\text{metal}} \times 132.4 \, \mathrm{C} = 1625.3 \, \text{J} \] More specifically, you would calculate \( c_{\text{metal}} \) to find its specific heat. This would lead you to find that the metal with a density of \( 2.97 \, \text{g/mL} \) and a calculated specific heat likely corresponds to a specific metal like granite or iron, but further precise calculation with the final specific heat value would narrow it down! Fun Fact: The specific heat capacity is a crucial property not just in science, but in cooking too! It explains why some pots heat up quickly while others take their sweet time. Dive deeper into the world of heat transfer! Explore how thermodynamics governs everything from your morning coffee to the temperature changes in our Earth’s crust, and discover fascinating connections between physical principles and everyday phenomena.

Related Questions

Latest Chemistry Questions

T0 Los aniones se generan por: a. ganancia de protones c. pérdida de electroners b. ganancia de electrones. d. pécida de protones (12) El radio atómico de los elementos \( \mathrm{Na}, \mathrm{F} \) y Mg aumenta en el orden: a. \( \mathrm{Na}, \mathrm{E}, \mathrm{Mg} \). c. \( \mathrm{F}, \mathrm{Mg}, \mathrm{Na} \). b. \( \mathrm{F}, \mathrm{Na}, \mathrm{Mg} \). d. \( \mathrm{Mg}, \mathrm{Na}, \mathrm{F} \) (13) El arsénico pertenece al periodo 4 , grupo 15 , y el flúor, al periodo 2 , grupo 17. Es correcto decir que: a. el arsénico posee menor carácter metálico. c. el fluor tiene mayor radio atómico. b. el arsénico posee mayor energia de ionización. d. el flúor posee mayor afinidad electrónica. (14) Los electrones más cercanos al núcleo provocan que los periféricos sean atraidos con menor fuerza hacia el núcleo. Este fenómeno se llama: a. efecto de apantallamiento. c. carga eléctrica. b. carga nuclear. d. fuerza magnética. (15) Propiedad periódica que indica la fuerza con la que el átomo de una molécula atrae hacia sí los electrones compartidos. Se refiere a: a. energía de ionización. c. afinidad electrónica. b. electronegatividad. d. radio atómico. 16 ¿Cómo se denomina el conjunto de elementos que presentan similar configuración electrónic y distinto nivel de energía? a. periodo c. orbital b. grupo d. número atómico 17 En un periodo la energía de ionización: a. aumenta de izquierda a derecha. c. aumenta de abajo hacia arriba. 3. disminuye de izquierda a derecha. d. disminuye de abajo hacia arriba.
Chemistry Ecuador Mar 10, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy