Question
upstudy study bank question image url

\( \left. \begin{array} { l } { ( 3 x - 2 y + 1 ) ^ { 2 } } \\ { ( a + 6 b - 5 c ) ^ { 2 } } \\ { ( a ^ { 2 } + 5 a + 4 ) ^ { 2 } } \\ { ( a ^ { 2 } + 3 a - 2 ) ^ { 2 } } \end{array} \right. \)

Ask by Best Pearson. in Ecuador
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Aquí están las expresiones expandidas: 1. \( (3x - 2y + 1)^2 = 9x^2 + 4y^2 + 1 - 12xy + 6x - 4y \) 2. \( (a + 6b - 5c)^2 = a^2 + 36b^2 + 25c^2 + 12ab - 10ac - 60bc \) 3. \( (a^2 + 5a + 4)^2 = a^4 + 33a^2 + 16 + 10a^3 + 40a \) 4. \( (a^2 + 3a - 2)^2 = a^4 + 5a^2 + 4 + 6a^3 - 12a \) Si necesitas más ayuda o alguna otra operación, no dudes en preguntar.

Solution

Simplify the expression by following steps: - step0: Evaluate the power: \(\left(3x-2y+1\right)^{2}\) - step1: Expand the expression: \(\left(3x\right)^{2}+\left(-2y\right)^{2}+1^{2}+2\times 3x\left(-2y\right)+2\times 3x\times 1+2\left(-2y\right)\times 1\) - step2: Calculate: \(9x^{2}+4y^{2}+1-12xy+6x-4y\) Expand the expression \( (a ^ { 2 } + 3 a - 2) ^ { 2 } \) Simplify the expression by following steps: - step0: Evaluate the power: \(\left(a^{2}+3a-2\right)^{2}\) - step1: Expand the expression: \(\left(a^{2}\right)^{2}+\left(3a\right)^{2}+\left(-2\right)^{2}+2a^{2}\times 3a+2a^{2}\left(-2\right)+2\times 3a\left(-2\right)\) - step2: Calculate: \(a^{4}+9a^{2}+4+6a^{3}-4a^{2}-12a\) - step3: Subtract the terms: \(a^{4}+5a^{2}+4+6a^{3}-12a\) Expand the expression \( (a + 6 b - 5 c) ^ { 2 } \) Simplify the expression by following steps: - step0: Evaluate the power: \(\left(a+6b-5c\right)^{2}\) - step1: Expand the expression: \(a^{2}+\left(6b\right)^{2}+\left(-5c\right)^{2}+2a\times 6b+2a\left(-5c\right)+2\times 6b\left(-5c\right)\) - step2: Calculate: \(a^{2}+36b^{2}+25c^{2}+12ab-10ac-60bc\) Expand the expression \( (a ^ { 2 } + 5 a + 4) ^ { 2 } \) Simplify the expression by following steps: - step0: Evaluate the power: \(\left(a^{2}+5a+4\right)^{2}\) - step1: Expand the expression: \(\left(a^{2}\right)^{2}+\left(5a\right)^{2}+4^{2}+2a^{2}\times 5a+2a^{2}\times 4+2\times 5a\times 4\) - step2: Calculate: \(a^{4}+25a^{2}+16+10a^{3}+8a^{2}+40a\) - step3: Add the terms: \(a^{4}+33a^{2}+16+10a^{3}+40a\) Aquí están las expresiones expandidas: 1. Para \( (3x - 2y + 1)^{2} \): \[ 9x^{2} + 4y^{2} + 1 - 12xy + 6x - 4y \] 2. Para \( (a + 6b - 5c)^{2} \): \[ a^{2} + 36b^{2} + 25c^{2} + 12ab - 10ac - 60bc \] 3. Para \( (a^{2} + 5a + 4)^{2} \): \[ a^{4} + 33a^{2} + 16 + 10a^{3} + 40a \] 4. Para \( (a^{2} + 3a - 2)^{2} \): \[ a^{4} + 5a^{2} + 4 + 6a^{3} - 12a \] Si necesitas más ayuda o alguna otra operación, no dudes en preguntar.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Did you know that the process of squaring a binomial, like \( (3x - 2y + 1)^2 \), is based on the algebraic identity \( (a + b)^2 = a^2 + 2ab + b^2 \)? This identity helps you expand polynomials efficiently, breaking them down into simpler components before recombining them for a more comprehensive solution. It’s like deconstructing a Lego set before you build something amazing! When tackling polynomials like \( (a^2 + 5a + 4)^2 \), be aware of common mistakes, such as forgetting to square each term in the binomial! Always remember to apply the template \( (a + b)^2 = a^2 + 2ab + b^2 \) meticulously. Double-check that you've multiplied correctly, as any oversight can throw off your final answer. So take your time, and double-check your work for clarity!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy