Question
Conflaence Intervals and Hypothesle Testing
Choosing an appropriate sample slze
Espanol
A personality test has a subsection designed to assess the “honesty” of the test-taker. Suppose that you’re interested in the mean score,
, on this subsection among the general population. You decide that you’ll use the mean of a random sample of scores on this subsection to estimate
. What is the minimum sample size needed in order for you to be
confident that your estimate is within 5 of
? Use the value 21 for the population standard deviation of scores on this subsection.
Carry your intermediate computations to at least three decimal places. Write your answer as a whole number (and make sure that it is the minimum whole number that satisfies the requirements).
(If necessary, consult a list of formulas.)
Choosing an appropriate sample slze
Espanol
(If necessary, consult a list of formulas.)
Ask by Guzman Bob. in the United States
Mar 27,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
The minimum sample size needed is 48.
Solution
We begin with the formula for the margin of error in estimating a mean when the population standard deviation is known:
where
-
is the desired margin of error, -
is the population standard deviation, -
is the critical value from the standard normal distribution, -
is the sample size.
For a
confidence level, the significance level is
and each tail has
. The corresponding
value is approximately:
The formula for the margin of error becomes:
Solve for
:
Calculate the numerator:
Thus,
Now, square both sides to solve for
:
Since
must be a whole number and the sample size must be large enough so that the margin of error is within 5, we round up to the next whole number:
The minimum sample size needed is
.
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Extra Insights
Para determinar el tamaño mínimo de la muestra necesario para estar un 90% confiados de que nuestra estimación está dentro de 5 unidades del valor verdadero de la media
, usamos la fórmula para el tamaño de la muestra en este contexto:
donde:
-
es el valor z correspondiente al nivel de confianza (para 90%, ), -
es la desviación estándar de la población (21 en este caso), -
es el margen de error deseado (5 en este caso).
Sustituyendo los valores:
Calculamos el tamaño de la muestra:
Dado que necesitamos un número entero, redondeamos hacia arriba, resultando en n = 48.
Por lo tanto, el tamaño mínimo de la muestra requerido es 48.