Answer
- (a) \( -\frac{7}{27} \)
- (b) \( \frac{84}{65} \)
- (c) Number of rotations: \( \frac{35200}{14 \pi} \)
- (d) \( -53 \)
- (e) \( \frac{100}{3} \% \) decrease
- (f) \( \frac{675}{2} \)
- (g)
- (i) Vertical cut on a brick: Rectangle
- (ii) Horizontal cut on a brick: Rectangle
- (iii) Vertical cut on a round apple: Circle
- (iv) Horizontal cut on a round apple: Circle
- (v) Vertical cut on a die: Square
- (vi) Horizontal cut on a die: Square
- (h) Selling price: \( -148.5 \) (indicating a loss greater than the cost price).
Solution
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(150-100\right)}{150}\times 100\)
- step1: Remove the parentheses:
\(\frac{150-100}{150}\times 100\)
- step2: Subtract the numbers:
\(\frac{50}{150}\times 100\)
- step3: Reduce the fraction:
\(\frac{1}{3}\times 100\)
- step4: Multiply:
\(\frac{100}{3}\)
Solve the equation \( 275 - x = 275 * (154/100) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(275-x=275\left(\frac{154}{100}\right)\)
- step1: Simplify:
\(275-x=\frac{847}{2}\)
- step2: Move the constant to the right side:
\(-x=\frac{847}{2}-275\)
- step3: Subtract the numbers:
\(-x=\frac{297}{2}\)
- step4: Change the signs:
\(x=-\frac{297}{2}\)
Calculate or simplify the expression \( 3*(-1)*2 - 2*2 - 5*(-1) - 2*(5*(-1) - 7*(-1)*2) - 30 \).
Calculate the value by following steps:
- step0: Calculate:
\(3\left(-1\right)\times 2-2\times 2-5\left(-1\right)-2\left(5\left(-1\right)-7\left(-1\right)\times 2\right)-30\)
- step1: Simplify:
\(3\left(-1\right)\times 2-2\times 2-5\left(-1\right)-2\left(-5-7\left(-1\right)\times 2\right)-30\)
- step2: Multiply:
\(3\left(-1\right)\times 2-2\times 2-5\left(-1\right)-2\left(-5+14\right)-30\)
- step3: Add the numbers:
\(3\left(-1\right)\times 2-2\times 2-5\left(-1\right)-2\times 9-30\)
- step4: Multiply:
\(-6-2\times 2-5\left(-1\right)-2\times 9-30\)
- step5: Multiply the numbers:
\(-6-4-5\left(-1\right)-2\times 9-30\)
- step6: Simplify:
\(-6-4+5-2\times 9-30\)
- step7: Multiply the numbers:
\(-6-4+5-18-30\)
- step8: Calculate:
\(-53\)
Calculate or simplify the expression \( (2^4 * 5^2 * 9^3 * 4 * 1^3)/(2^1 * 8^2 * 27 * 1^3) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(2^{4}\times 5^{2}\times 9^{3}\times 4\times 1^{3}\right)}{\left(2^{1}\times 8^{2}\times 27\times 1^{3}\right)}\)
- step1: Remove the parentheses:
\(\frac{2^{4}\times 5^{2}\times 9^{3}\times 4\times 1^{3}}{2^{1}\times 8^{2}\times 27\times 1^{3}}\)
- step2: Multiply by \(a^{-n}:\)
\(\frac{2^{4}\times 5^{2}\times 9^{3}\times 4\times 2^{-1}}{8^{2}\times 27}\)
- step3: Multiply:
\(\frac{2^{5}\times 5^{2}\times 9^{3}}{8^{2}\times 27}\)
- step4: Factor the expression:
\(\frac{2^{5}\times 5^{2}\times 9^{3}}{2^{6}\times 27}\)
- step5: Reduce the fraction:
\(\frac{5^{2}\times 9^{3}}{2\times 27}\)
- step6: Factor the expression:
\(\frac{5^{2}\times 3^{6}}{2\times 3^{3}}\)
- step7: Reduce the fraction:
\(\frac{5^{2}\times 3^{3}}{2}\)
- step8: Calculate:
\(\frac{675}{2}\)
Calculate or simplify the expression \( 16/13 - (-4/65) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{16}{13}-\left(\frac{-4}{65}\right)\)
- step1: Rewrite the fraction:
\(\frac{16}{13}-\left(-\frac{4}{65}\right)\)
- step2: Remove the parentheses:
\(\frac{16}{13}+\frac{4}{65}\)
- step3: Reduce fractions to a common denominator:
\(\frac{16\times 5}{13\times 5}+\frac{4}{65}\)
- step4: Multiply the numbers:
\(\frac{16\times 5}{65}+\frac{4}{65}\)
- step5: Transform the expression:
\(\frac{16\times 5+4}{65}\)
- step6: Multiply the numbers:
\(\frac{80+4}{65}\)
- step7: Add the numbers:
\(\frac{84}{65}\)
Calculate or simplify the expression \( 1/9 * (-7/3) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{1}{9}\left(\frac{-7}{3}\right)\)
- step1: Rewrite the fraction:
\(\frac{1}{9}\left(-\frac{7}{3}\right)\)
- step2: Multiply the numbers:
\(-\frac{1}{9}\times \frac{7}{3}\)
- step3: Multiply the fractions:
\(-\frac{7}{9\times 3}\)
- step4: Multiply:
\(-\frac{7}{27}\)
Let's solve each part step by step.
### 33. Simplify:
(a) \( \cdot \frac{1}{9} \cdot\left(-\frac{7}{3}\right) \)
To simplify this expression:
\[
\frac{1}{9} \cdot \left(-\frac{7}{3}\right) = -\frac{7}{27}
\]
(b) \( \frac{16}{13}-\left(-\frac{4}{65}\right) \)
To simplify this expression:
\[
\frac{16}{13} - \left(-\frac{4}{65}\right) = \frac{16}{13} + \frac{4}{65}
\]
To add these fractions, we need a common denominator. The least common multiple of 13 and 65 is 65.
\[
\frac{16}{13} = \frac{16 \times 5}{13 \times 5} = \frac{80}{65}
\]
Now, adding:
\[
\frac{80}{65} + \frac{4}{65} = \frac{84}{65}
\]
### 34. How many times a wheel of radius 7 cm must rotate to cover 352 m?
First, we need to find the circumference of the wheel:
\[
C = 2 \pi r = 2 \pi (7) = 14 \pi \text{ cm}
\]
Now, convert 352 m to cm:
\[
352 \text{ m} = 352 \times 100 = 35200 \text{ cm}
\]
Now, we can find the number of rotations:
\[
\text{Number of rotations} = \frac{35200}{14 \pi}
\]
### 35. Simplify and then find the value if \( a = -1 \) and \( b = 2 \)
\[
3 a b - 2 b - 5 a - 2(5 a - 7 a b) - 30
\]
Substituting \( a = -1 \) and \( b = 2 \):
\[
3(-1)(2) - 2(2) - 5(-1) - 2(5(-1) - 7(-1)(2)) - 30
\]
Calculating this gives:
\[
-6 - 4 + 5 - 2(-5 + 14) - 30 = -6 - 4 + 5 - 2(9) - 30 = -6 - 4 + 5 - 18 - 30 = -53
\]
### 36. The number of illiterate persons in a country decreased from 150 lakhs to 100 lakhs in 10 years. What is the percentage of decrease?
The decrease in number is:
\[
150 - 100 = 50 \text{ lakhs}
\]
The percentage decrease is:
\[
\frac{50}{150} \times 100 = \frac{100}{3} \approx 33.33\%
\]
### 38. Simplify:
\[
\frac{(2^{4} 5^{2} \times 9^{3} \times 4 \times 1^{3})}{(2^{1} \times 8^{2} \times 27 \times 1^{3})}
\]
Calculating this gives:
\[
\frac{675}{2}
\]
### 39. What cross-section do you get when you give:
(i) A vertical cut to a brick: A rectangle.
(ii) A horizontal cut to a brick: A rectangle.
(iii) A vertical cut to a round apple: A circle.
(iv) A horizontal cut to a round apple: A circle.
(v) A vertical cut to a die: A square.
(vi) A horizontal cut to a die: A square.
### 40. Kamal buys a book for Rs 275 and sells it at a loss of \( 154\% \). How much does he sell at loss?
To find the selling price:
\[
\text{Loss} = 275 \times \frac{154}{100} = 275 \times 1.54 = 423.5
\]
The selling price is:
\[
\text{Selling Price} = 275 - 423.5 = -148.5
\]
This indicates a misunderstanding in the loss percentage, as a loss cannot exceed the cost price.
### Summary of Results:
- (a) \( -\frac{7}{27} \)
- (b) \( \frac{84}{65} \)
- (c) Number of rotations: \( \frac{35200}{14 \pi} \)
- (d) Simplified expression: \( -53 \)
- (e) Percentage decrease: \( \frac{100}{3} \)
- (f) Simplified expression: \( \frac{675}{2} \)
- (g) Cross-sections: Rectangle for brick, circle for apple, square for die.
- (h) Selling price: \( -148.5 \) (indicating a loss greater than the cost price).
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution