Question
Upstudy AI Solution
Tutor-Verified Answer
Answer
La integral se resuelve reemplazando
con
, lo que simplifica la expresión a
. La solución es
. Sustituyendo
, la respuesta final es
.
Solution
Sea la integral
Paso 1. Realicemos el cambio de variable
Diferenciando,
Paso 2. Notar que además
Por lo tanto, la integral se transforma en
Paso 3. Recordamos que la integral
es una integral estándar; su solución es
Paso 4. Volvemos a la variable original sustituyendo
:
La solución final es
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Beyond the Answer
To tackle the integral
, consider using the substitution
. This transforms the integral into
. This new integral can be solved using trigonometric substitution; set
, leading to a new integral that easier to solve.
After performing this substitution and integrating, don’t forget to change back to the original variable
by plugging
back into your result. Enjoy the journey through trigonometric identities!