Answer
You can afford a loan of approximately \$19,567.56.
Solution
To determine how big of a loan you can afford with a monthly payment of \( \$450 \), a loan term of 4 years, and an interest rate of \( 5\% \), we can use the formula for the monthly payment of an amortizing loan:
\[
M = P \frac{r(1 + r)^n}{(1 + r)^n - 1}
\]
Where:
- \( M \) is the monthly payment
- \( P \) is the loan principal (the amount of the loan)
- \( r \) is the monthly interest rate (annual interest rate divided by 12)
- \( n \) is the number of payments (loan term in months)
### Step 1: Identify the known values
- Monthly payment \( M = 450 \)
- Annual interest rate \( = 5\% \) or \( 0.05 \)
- Monthly interest rate \( r = \frac{0.05}{12} \)
- Loan term \( = 4 \) years \( = 4 \times 12 = 48 \) months
### Step 2: Calculate the monthly interest rate
\[
r = \frac{0.05}{12} = \frac{0.05}{12} \approx 0.00416667
\]
### Step 3: Substitute the known values into the formula and solve for \( P \)
Rearranging the formula to solve for \( P \):
\[
P = M \frac{(1 + r)^n - 1}{r(1 + r)^n}
\]
Now we can substitute the values into the formula:
- \( M = 450 \)
- \( r \approx 0.00416667 \)
- \( n = 48 \)
Let's calculate \( P \).
### Step 4: Calculate \( P \)
We will perform the calculation now.
First, we need to calculate \( (1 + r)^n \):
\[
(1 + r)^n = (1 + 0.00416667)^{48}
\]
Then we can substitute everything back into the formula for \( P \).
Let's perform these calculations.
Calculate the value by following steps:
- step0: Calculate:
\(\left(1+0.00416667\right)^{48}\)
- step1: Add the numbers:
\(1.00416667^{48}\)
- step2: Convert the expressions:
\(\left(\frac{100416667}{100000000}\right)^{48}\)
- step3: Use the properties of exponents:
\(\frac{100416667^{48}}{100000000^{48}}\)
Calculate or simplify the expression \( 450 * ((1 + 0.00416667)^48 - 1) / (0.00416667 * (1 + 0.00416667)^48) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{450\left(\left(1+0.00416667\right)^{48}-1\right)}{\left(0.00416667\left(1+0.00416667\right)^{48}\right)}\)
- step1: Remove the parentheses:
\(\frac{450\left(\left(1+0.00416667\right)^{48}-1\right)}{0.00416667\left(1+0.00416667\right)^{48}}\)
- step2: Add the numbers:
\(\frac{450\left(\left(1+0.00416667\right)^{48}-1\right)}{0.00416667\times 1.00416667^{48}}\)
- step3: Add the numbers:
\(\frac{450\left(1.00416667^{48}-1\right)}{0.00416667\times 1.00416667^{48}}\)
- step4: Convert the expressions:
\(\frac{450\left(\left(\frac{100416667}{100000000}\right)^{48}-1\right)}{0.00416667\times 1.00416667^{48}}\)
- step5: Subtract the numbers:
\(\frac{450\times \frac{100416667^{48}-100000000^{48}}{100000000^{48}}}{0.00416667\times 1.00416667^{48}}\)
- step6: Convert the expressions:
\(\frac{450\times \frac{100416667^{48}-100000000^{48}}{100000000^{48}}}{0.00416667\left(\frac{100416667}{100000000}\right)^{48}}\)
- step7: Multiply the numbers:
\(\frac{\frac{9\times 100416667^{48}-9\times 100000000^{48}}{50^{191}\times 16^{48}}}{0.00416667\left(\frac{100416667}{100000000}\right)^{48}}\)
- step8: Multiply the numbers:
\(\frac{\frac{9\times 100416667^{48}-9\times 100000000^{48}}{50^{191}\times 16^{48}}}{\frac{416667\times 100416667^{48}}{100000000^{49}}}\)
- step9: Multiply by the reciprocal:
\(\frac{9\times 100416667^{48}-9\times 100000000^{48}}{50^{191}\times 16^{48}}\times \frac{100000000^{49}}{416667\times 100416667^{48}}\)
- step10: Rewrite the expression:
\(\frac{3\left(3\times 100416667^{48}-3\times 100000000^{48}\right)}{50^{191}\times 16^{48}}\times \frac{100000000^{49}}{416667\times 100416667^{48}}\)
- step11: Reduce the numbers:
\(\frac{3\times 100416667^{48}-3\times 100000000^{48}}{50^{191}\times 16^{48}}\times \frac{100000000^{49}}{138889\times 100416667^{48}}\)
- step12: Rewrite the expression:
\(\frac{3\times 100416667^{48}-3\times 100000000^{48}}{50^{191}\times 16^{48}}\times \frac{6250000^{49}\times 16^{49}}{138889\times 100416667^{48}}\)
- step13: Rewrite the expression:
\(\frac{3\times 100416667^{48}-3\times 100000000^{48}}{50^{191}\times 16^{48}}\times \frac{50^{196}\times 16^{49}}{138889\times 100416667^{48}}\)
- step14: Reduce the numbers:
\(\frac{3\times 100416667^{48}-3\times 100000000^{48}}{16^{48}}\times \frac{50^{5}\times 16^{49}}{138889\times 100416667^{48}}\)
- step15: Rewrite the expression:
\(\frac{3\times 100416667^{48}-3\times 100000000^{48}}{16^{48}}\times \frac{2^{5}\times 25^{5}\times 16^{49}}{138889\times 100416667^{48}}\)
- step16: Rewrite the expression:
\(\frac{3\times 100416667^{48}-3\times 100000000^{48}}{2^{192}}\times \frac{2^{5}\times 25^{5}\times 16^{49}}{138889\times 100416667^{48}}\)
- step17: Reduce the numbers:
\(\frac{3\times 100416667^{48}-3\times 100000000^{48}}{2^{187}}\times \frac{25^{5}\times 16^{49}}{138889\times 100416667^{48}}\)
- step18: Rewrite the expression:
\(\frac{3\times 100416667^{48}-3\times 100000000^{48}}{2^{187}}\times \frac{25^{5}\times 2^{196}}{138889\times 100416667^{48}}\)
- step19: Reduce the numbers:
\(\left(3\times 100416667^{48}-3\times 100000000^{48}\right)\times \frac{25^{5}\times 2^{9}}{138889\times 100416667^{48}}\)
- step20: Multiply the fractions:
\(\frac{\left(3\times 100416667^{48}-3\times 100000000^{48}\right)\times 512\times 25^{5}}{138889\times 100416667^{48}}\)
- step21: Multiply:
\(\frac{1536\times 100416667^{48}\times 25^{5}-1536\times 100000000^{48}\times 25^{5}}{138889\times 100416667^{48}}\)
### Step 5: Calculate \( (1 + r)^n \)
From our calculations, we found:
\[
(1 + r)^n \approx 1.220896
\]
### Step 6: Calculate \( P \)
Now substituting this value back into the formula for \( P \):
\[
P \approx 450 \cdot \frac{(1.220896 - 1)}{0.00416667 \cdot 1.220896}
\]
Calculating the numerator:
\[
1.220896 - 1 \approx 0.220896
\]
Now substituting this into the formula:
\[
P \approx 450 \cdot \frac{0.220896}{0.00416667 \cdot 1.220896}
\]
Calculating the denominator:
\[
0.00416667 \cdot 1.220896 \approx 0.005080
\]
Now substituting this back into the formula for \( P \):
\[
P \approx 450 \cdot \frac{0.220896}{0.005080}
\]
Let's calculate \( P \).
Calculate the value by following steps:
- step0: Calculate:
\(450\left(\frac{0.220896}{0.00508}\right)\)
- step1: Divide the terms:
\(450\times \frac{27612}{635}\)
- step2: Reduce the numbers:
\(90\times \frac{27612}{127}\)
- step3: Multiply:
\(\frac{90\times 27612}{127}\)
- step4: Multiply:
\(\frac{2485080}{127}\)
### Final Calculation of \( P \)
After performing the calculations, we find:
\[
P \approx 19567.56
\]
### Conclusion
You can afford a loan of approximately **\$19,567.56** with a monthly payment of \$450 over 4 years at an interest rate of 5%.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution