Question
upstudy study bank question image url

You can afford a \( \$ 450 \) per month car payment. You've found a 4 year loan at \( 5 \% \) interest. How big of a loan can you afford? Question Help: \( D \) Video 1 Video 2 Post to forum Submit Question

Ask by Mitchell Tucker. in the United States
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

You can afford a loan of approximately \$19,567.56.

Solution

To determine how big of a loan you can afford with a monthly payment of \( \$450 \), a loan term of 4 years, and an interest rate of \( 5\% \), we can use the formula for the monthly payment of an amortizing loan: \[ M = P \frac{r(1 + r)^n}{(1 + r)^n - 1} \] Where: - \( M \) is the monthly payment - \( P \) is the loan principal (the amount of the loan) - \( r \) is the monthly interest rate (annual interest rate divided by 12) - \( n \) is the number of payments (loan term in months) ### Step 1: Identify the known values - Monthly payment \( M = 450 \) - Annual interest rate \( = 5\% \) or \( 0.05 \) - Monthly interest rate \( r = \frac{0.05}{12} \) - Loan term \( = 4 \) years \( = 4 \times 12 = 48 \) months ### Step 2: Calculate the monthly interest rate \[ r = \frac{0.05}{12} = \frac{0.05}{12} \approx 0.00416667 \] ### Step 3: Substitute the known values into the formula and solve for \( P \) Rearranging the formula to solve for \( P \): \[ P = M \frac{(1 + r)^n - 1}{r(1 + r)^n} \] Now we can substitute the values into the formula: - \( M = 450 \) - \( r \approx 0.00416667 \) - \( n = 48 \) Let's calculate \( P \). ### Step 4: Calculate \( P \) We will perform the calculation now. First, we need to calculate \( (1 + r)^n \): \[ (1 + r)^n = (1 + 0.00416667)^{48} \] Then we can substitute everything back into the formula for \( P \). Let's perform these calculations. Calculate the value by following steps: - step0: Calculate: \(\left(1+0.00416667\right)^{48}\) - step1: Add the numbers: \(1.00416667^{48}\) - step2: Convert the expressions: \(\left(\frac{100416667}{100000000}\right)^{48}\) - step3: Use the properties of exponents: \(\frac{100416667^{48}}{100000000^{48}}\) Calculate or simplify the expression \( 450 * ((1 + 0.00416667)^48 - 1) / (0.00416667 * (1 + 0.00416667)^48) \). Calculate the value by following steps: - step0: Calculate: \(\frac{450\left(\left(1+0.00416667\right)^{48}-1\right)}{\left(0.00416667\left(1+0.00416667\right)^{48}\right)}\) - step1: Remove the parentheses: \(\frac{450\left(\left(1+0.00416667\right)^{48}-1\right)}{0.00416667\left(1+0.00416667\right)^{48}}\) - step2: Add the numbers: \(\frac{450\left(\left(1+0.00416667\right)^{48}-1\right)}{0.00416667\times 1.00416667^{48}}\) - step3: Add the numbers: \(\frac{450\left(1.00416667^{48}-1\right)}{0.00416667\times 1.00416667^{48}}\) - step4: Convert the expressions: \(\frac{450\left(\left(\frac{100416667}{100000000}\right)^{48}-1\right)}{0.00416667\times 1.00416667^{48}}\) - step5: Subtract the numbers: \(\frac{450\times \frac{100416667^{48}-100000000^{48}}{100000000^{48}}}{0.00416667\times 1.00416667^{48}}\) - step6: Convert the expressions: \(\frac{450\times \frac{100416667^{48}-100000000^{48}}{100000000^{48}}}{0.00416667\left(\frac{100416667}{100000000}\right)^{48}}\) - step7: Multiply the numbers: \(\frac{\frac{9\times 100416667^{48}-9\times 100000000^{48}}{50^{191}\times 16^{48}}}{0.00416667\left(\frac{100416667}{100000000}\right)^{48}}\) - step8: Multiply the numbers: \(\frac{\frac{9\times 100416667^{48}-9\times 100000000^{48}}{50^{191}\times 16^{48}}}{\frac{416667\times 100416667^{48}}{100000000^{49}}}\) - step9: Multiply by the reciprocal: \(\frac{9\times 100416667^{48}-9\times 100000000^{48}}{50^{191}\times 16^{48}}\times \frac{100000000^{49}}{416667\times 100416667^{48}}\) - step10: Rewrite the expression: \(\frac{3\left(3\times 100416667^{48}-3\times 100000000^{48}\right)}{50^{191}\times 16^{48}}\times \frac{100000000^{49}}{416667\times 100416667^{48}}\) - step11: Reduce the numbers: \(\frac{3\times 100416667^{48}-3\times 100000000^{48}}{50^{191}\times 16^{48}}\times \frac{100000000^{49}}{138889\times 100416667^{48}}\) - step12: Rewrite the expression: \(\frac{3\times 100416667^{48}-3\times 100000000^{48}}{50^{191}\times 16^{48}}\times \frac{6250000^{49}\times 16^{49}}{138889\times 100416667^{48}}\) - step13: Rewrite the expression: \(\frac{3\times 100416667^{48}-3\times 100000000^{48}}{50^{191}\times 16^{48}}\times \frac{50^{196}\times 16^{49}}{138889\times 100416667^{48}}\) - step14: Reduce the numbers: \(\frac{3\times 100416667^{48}-3\times 100000000^{48}}{16^{48}}\times \frac{50^{5}\times 16^{49}}{138889\times 100416667^{48}}\) - step15: Rewrite the expression: \(\frac{3\times 100416667^{48}-3\times 100000000^{48}}{16^{48}}\times \frac{2^{5}\times 25^{5}\times 16^{49}}{138889\times 100416667^{48}}\) - step16: Rewrite the expression: \(\frac{3\times 100416667^{48}-3\times 100000000^{48}}{2^{192}}\times \frac{2^{5}\times 25^{5}\times 16^{49}}{138889\times 100416667^{48}}\) - step17: Reduce the numbers: \(\frac{3\times 100416667^{48}-3\times 100000000^{48}}{2^{187}}\times \frac{25^{5}\times 16^{49}}{138889\times 100416667^{48}}\) - step18: Rewrite the expression: \(\frac{3\times 100416667^{48}-3\times 100000000^{48}}{2^{187}}\times \frac{25^{5}\times 2^{196}}{138889\times 100416667^{48}}\) - step19: Reduce the numbers: \(\left(3\times 100416667^{48}-3\times 100000000^{48}\right)\times \frac{25^{5}\times 2^{9}}{138889\times 100416667^{48}}\) - step20: Multiply the fractions: \(\frac{\left(3\times 100416667^{48}-3\times 100000000^{48}\right)\times 512\times 25^{5}}{138889\times 100416667^{48}}\) - step21: Multiply: \(\frac{1536\times 100416667^{48}\times 25^{5}-1536\times 100000000^{48}\times 25^{5}}{138889\times 100416667^{48}}\) ### Step 5: Calculate \( (1 + r)^n \) From our calculations, we found: \[ (1 + r)^n \approx 1.220896 \] ### Step 6: Calculate \( P \) Now substituting this value back into the formula for \( P \): \[ P \approx 450 \cdot \frac{(1.220896 - 1)}{0.00416667 \cdot 1.220896} \] Calculating the numerator: \[ 1.220896 - 1 \approx 0.220896 \] Now substituting this into the formula: \[ P \approx 450 \cdot \frac{0.220896}{0.00416667 \cdot 1.220896} \] Calculating the denominator: \[ 0.00416667 \cdot 1.220896 \approx 0.005080 \] Now substituting this back into the formula for \( P \): \[ P \approx 450 \cdot \frac{0.220896}{0.005080} \] Let's calculate \( P \). Calculate the value by following steps: - step0: Calculate: \(450\left(\frac{0.220896}{0.00508}\right)\) - step1: Divide the terms: \(450\times \frac{27612}{635}\) - step2: Reduce the numbers: \(90\times \frac{27612}{127}\) - step3: Multiply: \(\frac{90\times 27612}{127}\) - step4: Multiply: \(\frac{2485080}{127}\) ### Final Calculation of \( P \) After performing the calculations, we find: \[ P \approx 19567.56 \] ### Conclusion You can afford a loan of approximately **\$19,567.56** with a monthly payment of \$450 over 4 years at an interest rate of 5%.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To determine the size of the loan you can afford, we can use the formula for the monthly payment on an amortizing loan, which is: \[ M = P \times \frac{r(1 + r)^n}{(1 + r)^n - 1} \] where \( M \) is the monthly payment, \( P \) is the loan amount, \( r \) is the monthly interest rate, and \( n \) is the number of payments. In your case, you can set \( M = 450 \), \( r = \frac{0.05}{12} \), and \( n = 4 \times 12 = 48 \). Solving for \( P \) gives you the maximum loan amount you can afford. If we solved this, we would find that you can afford a loan of approximately \( \$19,000 \). Do keep in mind this estimate doesn't consider taxes, insurance, or maintenance in the monthly budget! Now that you have a number in hand, it’s a great idea to shop around! Many lenders will offer different rates, so don’t settle for the first option. Compare offers and negotiate when possible. Not only can this help you get a better interest rate, it might also provide you options that better suit your financial situation!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy