Question
upstudy study bank question image url

evaluate \( \sqrt{\frac{0.0048 \times 0.81 \times 10^{-7}}{0.027 \times 0.04 \times 10^{6}}} \)

Ask by Tyler Parry. in Ghana
Feb 16,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The result is \( 6 \times 10^{-7} \).

Solution

Calculate or simplify the expression \( \sqrt{\frac{0.0048 \times 0.81 \times 10^{-7}}{0.027 \times 0.04 \times 10^{6}}} \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{\frac{0.0048\times 0.81\times 10^{-7}}{0.027\times 0.04\times 10^{6}}}\) - step1: Multiply by \(a^{-n}:\) \(\sqrt{\frac{0.0048\times 0.81\times 10^{-7}\times 10^{-6}}{0.027\times 0.04}}\) - step2: Multiply: \(\sqrt{\frac{\frac{243}{62500\times 10^{13}}}{0.027\times 0.04}}\) - step3: Multiply the numbers: \(\sqrt{\frac{\frac{243}{62500\times 10^{13}}}{0.00108}}\) - step4: Divide the numbers: \(\sqrt{\frac{9}{20480\times 5^{13}}}\) - step5: Use the properties of radicals: \(\frac{\sqrt{9}}{\sqrt{20480\times 5^{13}}}\) - step6: Simplify the expression: \(\frac{3}{\sqrt{20480\times 5^{13}}}\) - step7: Multiply by the Conjugate: \(\frac{3\sqrt{20480\times 5^{13}}}{\sqrt{20480\times 5^{13}}\times \sqrt{20480\times 5^{13}}}\) - step8: Multiply the numbers: \(\frac{3\sqrt{20480\times 5^{13}}}{20480\times 5^{13}}\) The result of the expression \( \sqrt{\frac{0.0048 \times 0.81 \times 10^{-7}}{0.027 \times 0.04 \times 10^{6}}} \) is \( 6 \times 10^{-7} \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Let's simplify the expression step by step. First, we can express the problem as follows: \[ \sqrt{\frac{0.0048 \times 0.81 \times 10^{-7}}{0.027 \times 0.04 \times 10^{6}}} \] Calculating the components in the numerator and the denominator separately: 1. **Numerator**: \[ 0.0048 \times 0.81 = 0.003888 \] Thus, the numerator is: \[ 0.003888 \times 10^{-7} = 3.888 \times 10^{-10} \] 2. **Denominator**: \[ 0.027 \times 0.04 = 0.00108 \] Thus, the denominator is: \[ 0.00108 \times 10^{6} = 1.08 \] Now, we can rewrite our expression: \[ \sqrt{\frac{3.888 \times 10^{-10}}{1.08}} \] Next, we calculate the division: \[ \frac{3.888 \times 10^{-10}}{1.08} = 3.600 \times 10^{-10} \quad \text{(approximately)} \] Now, we take the square root: \[ \sqrt{3.600 \times 10^{-10}} = \sqrt{3.600} \times \sqrt{10^{-10}} = \sqrt{3.6} \times 10^{-5} \] Calculating \( \sqrt{3.6} \): \[ \sqrt{3.6} \approx 1.897 \] Putting it all together, we get: \[ 1.897 \times 10^{-5} \] Therefore, the final result is approximately: \[ \sqrt{\frac{0.0048 \times 0.81 \times 10^{-7}}{0.027 \times 0.04 \times 10^{6}}} \approx 1.897 \times 10^{-5} \]

Related Questions

Latest Arithmetic Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy