Question
upstudy study bank question image url

Divide \( \frac{3 x^{3}-2 x}{x+5} \) \( 3 x^{2}+[?] x+\quad+\frac{}{x+5} \)

Ask by Munoz Simpson. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El resultado de la división es \( 3x^{2} - 15x + 73 \) con un residuo de \( -365 \) sobre \( x + 5 \).

Solution

Para dividir el polinomio 3x³ – 2x por x + 5, seguimos estos pasos: 1. Escribimos el dividendo incluyendo los términos con coeficiente cero:   3x³ + 0x² – 2x + 0 2. Dividimos el primer término del dividendo por el primer término del divisor:   3x³ ÷ x = 3x²   Multiplicamos el divisor por 3x²:    3x² · (x + 5) = 3x³ + 15x²   Restamos:    (3x³ + 0x²) – (3x³ + 15x²) = –15x² 3. Bajamos el siguiente término (–2x):   Obtenemos –15x² – 2x   Dividimos –15x² entre x:    –15x² ÷ x = –15x   Multiplicamos el divisor por –15x:    –15x · (x + 5) = –15x² – 75x   Restamos:    (–15x² – 2x) – (–15x² – 75x) = 73x 4. Bajamos el siguiente término (0):   Obtenemos 73x + 0   Dividimos 73x entre x:    73x ÷ x = 73   Multiplicamos el divisor por 73:    73 · (x + 5) = 73x + 365   Restamos:    (73x + 0) – (73x + 365) = –365 El proceso final nos da:   Cociente: 3x² – 15x + 73   Residuo: –365 Por lo tanto, la división se expresa como:   (3x³ – 2x) / (x + 5) = 3x² – 15x + 73 – 365/(x + 5).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To divide the polynomial \(3x^3 - 2x\) by \(x + 5\), we can use polynomial long division. First, divide the leading term of the numerator \(3x^3\) by the leading term of the denominator \(x\), which gives us \(3x^2\). Multiply \(x + 5\) by \(3x^2\) to get \(3x^3 + 15x^2\). Subtract this from the original polynomial: \[ (3x^3 - 2x) - (3x^3 + 15x^2) = -15x^2 - 2x \] Next, divide the new leading term \(-15x^2\) by \(x\) to get \(-15x\). Multiply \(x + 5\) by \(-15x\) to get \(-15x^2 - 75x\) and subtract: \[ (-15x^2 - 2x) - (-15x^2 - 75x) = 73x \] Finally, divide \(73x\) by \(x\) to obtain \(73\). Multiply by \(x + 5\) to get \(73x + 365\) and subtract: \[ 73x - (73x + 365) = -365 \] Putting it all together gives us: \[ 3x^2 - 15x + 73 - \frac{365}{x + 5} \] So the missing values are: \( -15 \) for the coefficient of \(x\), \( 73 \) as the constant term, and \( -365 \) in the remainder.

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy