Question
upstudy study bank question image url

2) \( \left(1+\frac{1}{2}\right)^{2}-\sqrt{2+\frac{1}{11}}-\frac{3}{5}= \)

Ask by Donnelly Peterson. in Argentina
Nov 24,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

La expresión es aproximadamente igual a 0.204002.

Solution

Calculate or simplify the expression \( (1+1/2)^2-\sqrt(2+1/11)-3/5 \). Calculate the value by following steps: - step0: Calculate: \(\left(1+\frac{1}{2}\right)^{2}-\sqrt{2+\frac{1}{11}}-\frac{3}{5}\) - step1: Add the numbers: \(\left(\frac{3}{2}\right)^{2}-\sqrt{2+\frac{1}{11}}-\frac{3}{5}\) - step2: Add the numbers: \(\left(\frac{3}{2}\right)^{2}-\sqrt{\frac{23}{11}}-\frac{3}{5}\) - step3: Simplify the root: \(\left(\frac{3}{2}\right)^{2}-\frac{\sqrt{253}}{11}-\frac{3}{5}\) - step4: Evaluate the power: \(\frac{9}{4}-\frac{\sqrt{253}}{11}-\frac{3}{5}\) - step5: Reduce fractions to a common denominator: \(\frac{9\times 11\times 5}{4\times 11\times 5}-\frac{\sqrt{253}\times 4\times 5}{11\times 4\times 5}-\frac{3\times 4\times 11}{5\times 4\times 11}\) - step6: Multiply the terms: \(\frac{9\times 11\times 5}{220}-\frac{\sqrt{253}\times 4\times 5}{11\times 4\times 5}-\frac{3\times 4\times 11}{5\times 4\times 11}\) - step7: Multiply the terms: \(\frac{9\times 11\times 5}{220}-\frac{\sqrt{253}\times 4\times 5}{220}-\frac{3\times 4\times 11}{5\times 4\times 11}\) - step8: Multiply the terms: \(\frac{9\times 11\times 5}{220}-\frac{\sqrt{253}\times 4\times 5}{220}-\frac{3\times 4\times 11}{220}\) - step9: Transform the expression: \(\frac{9\times 11\times 5-\sqrt{253}\times 4\times 5-3\times 4\times 11}{220}\) - step10: Multiply the terms: \(\frac{495-\sqrt{253}\times 4\times 5-3\times 4\times 11}{220}\) - step11: Multiply the terms: \(\frac{495-20\sqrt{253}-3\times 4\times 11}{220}\) - step12: Multiply the terms: \(\frac{495-20\sqrt{253}-132}{220}\) - step13: Subtract the numbers: \(\frac{363-20\sqrt{253}}{220}\) La expresión \( \left(1+\frac{1}{2}\right)^{2}-\sqrt{2+\frac{1}{11}}-\frac{3}{5} \) es aproximadamente igual a 0.204002.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To solve the expression \( \left(1+\frac{1}{2}\right)^{2}-\sqrt{2+\frac{1}{11}}-\frac{3}{5} \): First, calculate \( \left(1+\frac{1}{2}\right)^{2} = \left(\frac{3}{2}\right)^{2} = \frac{9}{4} \). Next, simplify \( \sqrt{2+\frac{1}{11}} \): Convert \( 2 \) into a fraction: \( 2 = \frac{22}{11} \), so \( 2 + \frac{1}{11} = \frac{22}{11} + \frac{1}{11} = \frac{23}{11} \). Now, \( \sqrt{2+\frac{1}{11}} = \sqrt{\frac{23}{11}} = \frac{\sqrt{23}}{\sqrt{11}} \). Now, turn to \( \frac{3}{5} \). Putting it all together: We need to calculate \( \frac{9}{4} - \frac{\sqrt{23}}{\sqrt{11}} - \frac{3}{5} \). To subtract these fractions, we first find a common denominator, which can be \( 20 \) since it's the least common multiple of \( 4 \) and \( 5 \). Rewriting the fractions: - \( \frac{9}{4} = \frac{45}{20} \) - \( \frac{3}{5} = \frac{12}{20} \) So we now have: \( \frac{45}{20} - \frac{12}{20} - \frac{\sqrt{23}}{\sqrt{11}} \) = \( \frac{33}{20} - \frac{\sqrt{23}}{\sqrt{11}} \). The final answer is \( \frac{33}{20} - \frac{\sqrt{23}}{\sqrt{11}} \). If desired, this could be further simplified but still remains the exact value in this form.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy