Question
upstudy study bank question image url

7. (Eseg) Lembrando que \( \cos (a-b)=\cos a \cdot \cos b \) + sen \( a \cdot \operatorname{sen} b \), se \( \cos \left(x-45^{\circ}\right)=2 \sqrt{2} \cos x \), entăo \( \operatorname{tg} x \) é igual a: \( \begin{array}{llll}\text { a) } \frac{1}{3} & \text { b) } \frac{1}{2} & \text { c) } 1 & \text { d) } 2\end{array} \)

Ask by Pena Mann. in Brazil
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( \tan x = 1 \), choice c)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Extra Insights

Vamos começar resolvendo a equação dada. Usando a fórmula fornecida, temos: \[ \cos(x - 45^{\circ}) = \cos x \cdot \cos 45^{\circ} + \sin x \cdot \sin 45^{\circ} \] onde \( \cos 45^{\circ} = \sin 45^{\circ} = \frac{\sqrt{2}}{2} \). Portanto: \[ \cos(x - 45^{\circ}) = \frac{\sqrt{2}}{2} \cos x + \frac{\sqrt{2}}{2} \sin x \] Assim, substituindo na equação que temos: \[ \frac{\sqrt{2}}{2} \cos x + \frac{\sqrt{2}}{2} \sin x = 2 \sqrt{2} \cos x \] Multiplicando tudo por \( 2 \) para simplificar: \[ \sqrt{2} \cos x + \sqrt{2} \sin x = 4 \cos x \] Agora, isolando \( \sin x \): \[ \sqrt{2} \sin x = 4 \cos x - \sqrt{2} \cos x \] \[ \sqrt{2} \sin x = (4 - \sqrt{2}) \cos x \] Dividindo ambos os lados por \( \cos x \) (desde que \( \cos x \neq 0 \)), obtemos: \[ \tan x = \frac{4 - \sqrt{2}}{\sqrt{2}} \] Calculando \( \tan x \) no formato mais simples. Se \( \sqrt{2} \approx 1.414 \), temos: \[ 4 - \sqrt{2} \approx 4 - 1.414 \approx 2.586 \] \[ \frac{2.586}{1.414} \approx 1.828 \] Logo, isto está mais próximo de 2. Portanto, ao observar as opções dadas, a resposta correta seria: **d) 2**.

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy