Question
upstudy study bank question image url

Solve the equation \( 4 x^{2}+35 x+49=0 \) by factoring. The solutions are \( x_{1}=\square \) and \( x_{2}=\square \) with \( x_{1} \leq x_{2} \). Note: You can earn partial credit on this problem.

Ask by Haynes Welch. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The solutions are \( x_{1} = -7 \) and \( x_{2} = -\frac{7}{4} \).

Solution

Solve the equation \( 4x^{2}+35x+49=0 \). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(4x^{2}+35x+49=0\) - step1: Factor the expression: \(\left(x+7\right)\left(4x+7\right)=0\) - step2: Separate into possible cases: \(\begin{align}&4x+7=0\\&x+7=0\end{align}\) - step3: Solve the equation: \(\begin{align}&x=-\frac{7}{4}\\&x=-7\end{align}\) - step4: Rewrite: \(x_{1}=-7,x_{2}=-\frac{7}{4}\) The solutions to the equation \(4x^{2}+35x+49=0\) by factoring are \(x_{1}=-7\) and \(x_{2}=-\frac{7}{4}\) with \(x_{1} \leq x_{2}\).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To solve the equation \( 4x^2 + 35x + 49 = 0 \) by factoring, we start by looking for two numbers that multiply to \( 4 \cdot 49 = 196 \) and add up to \( 35 \). The two numbers that meet these criteria are \( 28 \) and \( 7 \). We can rewrite the equation using these numbers: \[ 4x^2 + 28x + 7x + 49 = 0 \] Next, we group the terms: \[ (4x^2 + 28x) + (7x + 49) = 0 \] Factoring out the common factors from each group, we get: \[ 4x(x + 7) + 7(x + 7) = 0 \] Now we can factor out the common binomial \( (x + 7) \): \[ (4x + 7)(x + 7) = 0 \] Now we set each factor equal to zero: 1. \( 4x + 7 = 0 \) leads to \( 4x = -7 \) or \( x = -\frac{7}{4} \) 2. \( x + 7 = 0 \) leads to \( x = -7 \) Thus, the solutions are \( x_1 = -7 \) and \( x_2 = -\frac{7}{4} \) with \( x_1 \leq x_2 \). So, we have: \( x_{1} = -7 \) and \( x_{2} = -\frac{7}{4} \).

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy