(8) (15 points) Let \( L: R^{4} \rightarrow R^{3} \) be the linear transformation defined by \( L(\vec{x})=\left[\begin{array}{cccc}1 & 2 & -3 & 12 \\ 2 & 4 & 2 & 0 \\ 3 & 6 & 1 & 6\end{array}\right] \cdot \vec{x} \). (a) Find a basis for the kernel of \( L \). (b) Find a basis for the range (image) of \( L \).
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To solve the problem, we need to analyze the transformation \( L: \mathbb{R}^4 \to \mathbb{R}^3 \) defined by the matrix \[ A = \begin{bmatrix} 1 & 2 & -3 & 12 \\ 2 & 4 & 2 & 0 \\ 3 & 6 & 1 & 6 \end{bmatrix}. \] **(a) To find a basis for the kernel of** \( L \): We start by setting up the equation \( A\vec{x} = \vec{0} \) where \( \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \). This results in the matrix equation: \[ \begin{bmatrix} 1 & 2 & -3 & 12 \\ 2 & 4 & 2 & 0 \\ 3 & 6 & 1 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}. \] We can view this as a system of equations: 1. \( x_1 + 2x_2 - 3x_3 + 12x_4 = 0 \) 2. \( 2x_1 + 4x_2 + 2x_3 = 0 \) 3. \( 3x_1 + 6x_2 + x_3 + 6x_4 = 0 \) To solve this, we can row reduce the augmented matrix. The row-reduced echelon form (RREF) of \( A \) is: \[ \begin{bmatrix} 1 & 2 & -3 & 12 \\ 0 & 0 & 8 & -24 \\ 0 & 0 & 0 & 0 \end{bmatrix}. \] From this, we have the following simplified equations: 1. \( x_1 + 2x_2 - 3x_3 + 12x_4 = 0 \) 2. \( 8x_3 - 24x_4 = 0 \) implies \( x_3 = 3x_4 \) Substituting \( x_3 = 3x_4 \) into the first equation gives: \[ x_1 + 2x_2 - 3(3x_4) + 12x_4 = 0 \implies x_1 + 2x_2 + 3x_4 = 0 \implies x_1 = -2x_2 - 3x_4. \] Let \( x_2 = t \) (a free variable) and \( x_4 = s \) (another free variable), then: \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2t - 3s \\ t \\ 3s \\ s \end{bmatrix} = t \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -3 \\ 0 \\ 3 \\ 1 \end{bmatrix}. \] Thus, a basis for the kernel of \( L \) is: \[ \left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 3 \\ 1 \end{bmatrix} \right\}. \] **(b) To find a basis for the range (image) of** \( L \): The range of a linear transformation is spanned by the columns of the matrix \( A \). We determine which columns are linearly independent. To find them, we can inspect the RREF of \( A \): \[ \begin{bmatrix} 1 & 2 & -3 & 12 \\ 0 & 0 & 8 & -24 \\ 0 & 0 & 0 & 0 \end{bmatrix}. \] From this RREF, the pivotal columns correspond to columns 1 and 3. Therefore, the range of \( L \) is spanned by the first and third columns of the original matrix \( A \): 1. \( \begin{bmatrix} 1 \\ 2 \\ 3 \end{b