Question
upstudy study bank question image url

1) Teniendo en cuenta que \( \forall \alpha \in \mathbf{R}: \operatorname{sen}^{2} \alpha+\cos ^{2} \alpha=1 \) y utilizando la máquina de calcular verifique para el caso \[ \begin{array}{c}\alpha=\frac{\pi}{2}, \alpha-\frac{7}{6} \pi, \alpha=\frac{\pi}{3}+2 k \pi \\ \alpha=-\frac{\pi}{2}, \alpha=-\frac{\pi}{6}\end{array} \]

Ask by Davison Simpson. in Argentina
Dec 03,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

En todos los casos, se verifica que \( \sin^2 \alpha + \cos^2 \alpha = 1 \).

Solution

Para verificar la identidad \( \sin^2 \alpha + \cos^2 \alpha = 1 \) para los valores de \( \alpha \) dados, calcularemos \( \sin^2 \alpha \) y \( \cos^2 \alpha \) para cada caso y sumaremos los resultados. 1. **Para \( \alpha = \frac{\pi}{2} \)**: \[ \sin\left(\frac{\pi}{2}\right) = 1 \quad \text{y} \quad \cos\left(\frac{\pi}{2}\right) = 0 \] \[ \sin^2\left(\frac{\pi}{2}\right) + \cos^2\left(\frac{\pi}{2}\right) = 1^2 + 0^2 = 1 \] 2. **Para \( \alpha = -\frac{7}{6} \pi \)**: \[ \sin\left(-\frac{7}{6} \pi\right) = -\frac{1}{2} \quad \text{y} \quad \cos\left(-\frac{7}{6} \pi\right) = -\frac{\sqrt{3}}{2} \] \[ \sin^2\left(-\frac{7}{6} \pi\right) + \cos^2\left(-\frac{7}{6} \pi\right) = \left(-\frac{1}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1 \] 3. **Para \( \alpha = \frac{\pi}{3} + 2k\pi \)** (donde \( k \) es un entero): \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \quad \text{y} \quad \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] \[ \sin^2\left(\frac{\pi}{3}\right) + \cos^2\left(\frac{\pi}{3}\right) = \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{3}{4} + \frac{1}{4} = 1 \] 4. **Para \( \alpha = -\frac{\pi}{2} \)**: \[ \sin\left(-\frac{\pi}{2}\right) = -1 \quad \text{y} \quad \cos\left(-\frac{\pi}{2}\right) = 0 \] \[ \sin^2\left(-\frac{\pi}{2}\right) + \cos^2\left(-\frac{\pi}{2}\right) = (-1)^2 + 0^2 = 1 \] 5. **Para \( \alpha = -\frac{\pi}{6} \)**: \[ \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2} \quad \text{y} \quad \cos\left(-\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] \[ \sin^2\left(-\frac{\pi}{6}\right) + \cos^2\left(-\frac{\pi}{6}\right) = \left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1 \] En todos los casos, hemos verificado que \( \sin^2 \alpha + \cos^2 \alpha = 1 \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Para el caso de \( \alpha = \frac{\pi}{2} \): \[ \operatorname{sen}^{2} \left(\frac{\pi}{2}\right) + \cos^{2} \left(\frac{\pi}{2}\right) = 1^2 + 0^2 = 1 \] Para \( \alpha = -\frac{7}{6} \pi \): \[ \operatorname{sen}^{2} \left(-\frac{7}{6} \pi\right) + \cos^{2} \left(-\frac{7}{6} \pi\right) = (-\frac{1}{2})^2 + (-\frac{\sqrt{3}}{2})^2 = \frac{1}{4} + \frac{3}{4} = 1 \] Para \( \alpha = \frac{\pi}{3} + 2k\pi \): \[ \operatorname{sen}^{2} \left(\frac{\pi}{3} + 2k\pi\right) + \cos^{2} \left(\frac{\pi}{3} + 2k\pi\right) = \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{3}{4} + \frac{1}{4} = 1 \] Para \( \alpha = -\frac{\pi}{2} \): \[ \operatorname{sen}^{2} \left(-\frac{\pi}{2}\right) + \cos^{2} \left(-\frac{\pi}{2}\right) = (-1)^2 + 0^2 = 1 \] Finalmente, para \( \alpha = -\frac{\pi}{6} \): \[ \operatorname{sen}^{2} \left(-\frac{\pi}{6}\right) + \cos^{2} \left(-\frac{\pi}{6}\right) = (-\frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2 = \frac{1}{4} + \frac{3}{4} = 1 \] En todos los casos, se verifica la relación \( \operatorname{sen}^{2} \alpha + \cos^{2} \alpha = 1 \). ¡La trigonometría es perfecta!

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy