1) Teniendo en cuenta que \( \forall \alpha \in \mathbf{R}: \operatorname{sen}^{2} \alpha+\cos ^{2} \alpha=1 \) y utilizando la máquina de calcular verifique para el caso \[ \begin{array}{c}\alpha=\frac{\pi}{2}, \alpha-\frac{7}{6} \pi, \alpha=\frac{\pi}{3}+2 k \pi \\ \alpha=-\frac{\pi}{2}, \alpha=-\frac{\pi}{6}\end{array} \]
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Mind Expander
Para el caso de \( \alpha = \frac{\pi}{2} \): \[ \operatorname{sen}^{2} \left(\frac{\pi}{2}\right) + \cos^{2} \left(\frac{\pi}{2}\right) = 1^2 + 0^2 = 1 \] Para \( \alpha = -\frac{7}{6} \pi \): \[ \operatorname{sen}^{2} \left(-\frac{7}{6} \pi\right) + \cos^{2} \left(-\frac{7}{6} \pi\right) = (-\frac{1}{2})^2 + (-\frac{\sqrt{3}}{2})^2 = \frac{1}{4} + \frac{3}{4} = 1 \] Para \( \alpha = \frac{\pi}{3} + 2k\pi \): \[ \operatorname{sen}^{2} \left(\frac{\pi}{3} + 2k\pi\right) + \cos^{2} \left(\frac{\pi}{3} + 2k\pi\right) = \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{3}{4} + \frac{1}{4} = 1 \] Para \( \alpha = -\frac{\pi}{2} \): \[ \operatorname{sen}^{2} \left(-\frac{\pi}{2}\right) + \cos^{2} \left(-\frac{\pi}{2}\right) = (-1)^2 + 0^2 = 1 \] Finalmente, para \( \alpha = -\frac{\pi}{6} \): \[ \operatorname{sen}^{2} \left(-\frac{\pi}{6}\right) + \cos^{2} \left(-\frac{\pi}{6}\right) = (-\frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2 = \frac{1}{4} + \frac{3}{4} = 1 \] En todos los casos, se verifica la relación \( \operatorname{sen}^{2} \alpha + \cos^{2} \alpha = 1 \). ¡La trigonometría es perfecta!