Answer
The division of \( 3x^{3} + 23x^{2} - x - 10 \) by \( x + 2 \) results in \( 3x^2 + 17x - 35 \) with a remainder of 60.
Solution
Sure! Let's use the **long division method** to divide the polynomial \( 3x^{3} + 23x^{2} - x - 10 \) by \( x + 2 \).
### Step-by-Step Long Division
1. **Set Up the Division**
\[
\begin{array}{r|lll}
& 3x^3 & +23x^2 & -x & -10 \\
x + 2 \, ) & \underline{3x^3} & +23x^2 & -x & -10 \\
\end{array}
\]
2. **Divide the First Terms**
- **Divide:** \( 3x^3 \div x = 3x^2 \)
- **Write:** \( 3x^2 \) above the division bar.
\[
\begin{array}{r|llll}
& 3x^2 & & & \\
x + 2 \, ) & 3x^3 & +23x^2 & -x & -10 \\
& \underline{3x^3} & +6x^2 & & \\
& & 17x^2 & -x & \\
\end{array}
\]
3. **Multiply and Subtract**
- **Multiply:** \( 3x^2 \times (x + 2) = 3x^3 + 6x^2 \)
- **Subtract:**
\[
(3x^3 + 23x^2) - (3x^3 + 6x^2) = 17x^2
\]
- **Bring Down:** The next term \(-x\).
4. **Repeat the Process**
- **Divide:** \( 17x^2 \div x = 17x \)
- **Write:** \( +17x \) above the division bar.
\[
\begin{array}{r|llll}
& 3x^2 & +17x & & \\
x + 2 \, ) & 3x^3 & +23x^2 & -x & -10 \\
& \underline{3x^3} & +6x^2 & & \\
& & 17x^2 & -x & \\
& & \underline{17x^2} & +34x & \\
& & & -35x & \\
\end{array}
\]
5. **Multiply and Subtract Again**
- **Multiply:** \( 17x \times (x + 2) = 17x^2 + 34x \)
- **Subtract:**
\[
(17x^2 - x) - (17x^2 + 34x) = -35x
\]
- **Bring Down:** The next term \(-10\).
6. **Final Division Step**
- **Divide:** \( -35x \div x = -35 \)
- **Write:** \( -35 \) above the division bar.
\[
\begin{array}{r|llll}
& 3x^2 & +17x & -35 & \\
x + 2 \, ) & 3x^3 & +23x^2 & -x & -10 \\
& \underline{3x^3} & +6x^2 & & \\
& & 17x^2 & -x & \\
& & \underline{17x^2} & +34x & \\
& & & -35x & -10 \\
& & & \underline{-35x} & -70 \\
& & & & 60 \\
\end{array}
\]
7. **Multiply and Subtract One Last Time**
- **Multiply:** \( -35 \times (x + 2) = -35x - 70 \)
- **Subtract:**
\[
(-35x - 10) - (-35x - 70) = 60
\]
### Final Result
- **Quotient:** \( 3x^2 + 17x - 35 \)
- **Remainder:** \( 60 \)
So, the division can be expressed as:
\[
\frac{3x^{3} + 23x^{2} - x - 10}{x + 2} = 3x^2 + 17x - 35 + \frac{60}{x + 2}
\]
**Summary:**
\[
3x^{3} + 23x^{2} - x - 10 = (x + 2)(3x^2 + 17x - 35) + 60
\]
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution