Question
upstudy study bank question image url

se the long division method to find the result when \( 3 x^{3}+23 x^{2}-x-10 \) is divided by \( x+2 \).

Ask by Greene Crawford. in the United States
Jan 30,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The division of \( 3x^{3} + 23x^{2} - x - 10 \) by \( x + 2 \) results in \( 3x^2 + 17x - 35 \) with a remainder of 60.

Solution

Sure! Let's use the **long division method** to divide the polynomial \( 3x^{3} + 23x^{2} - x - 10 \) by \( x + 2 \). ### Step-by-Step Long Division 1. **Set Up the Division** \[ \begin{array}{r|lll} & 3x^3 & +23x^2 & -x & -10 \\ x + 2 \, ) & \underline{3x^3} & +23x^2 & -x & -10 \\ \end{array} \] 2. **Divide the First Terms** - **Divide:** \( 3x^3 \div x = 3x^2 \) - **Write:** \( 3x^2 \) above the division bar. \[ \begin{array}{r|llll} & 3x^2 & & & \\ x + 2 \, ) & 3x^3 & +23x^2 & -x & -10 \\ & \underline{3x^3} & +6x^2 & & \\ & & 17x^2 & -x & \\ \end{array} \] 3. **Multiply and Subtract** - **Multiply:** \( 3x^2 \times (x + 2) = 3x^3 + 6x^2 \) - **Subtract:** \[ (3x^3 + 23x^2) - (3x^3 + 6x^2) = 17x^2 \] - **Bring Down:** The next term \(-x\). 4. **Repeat the Process** - **Divide:** \( 17x^2 \div x = 17x \) - **Write:** \( +17x \) above the division bar. \[ \begin{array}{r|llll} & 3x^2 & +17x & & \\ x + 2 \, ) & 3x^3 & +23x^2 & -x & -10 \\ & \underline{3x^3} & +6x^2 & & \\ & & 17x^2 & -x & \\ & & \underline{17x^2} & +34x & \\ & & & -35x & \\ \end{array} \] 5. **Multiply and Subtract Again** - **Multiply:** \( 17x \times (x + 2) = 17x^2 + 34x \) - **Subtract:** \[ (17x^2 - x) - (17x^2 + 34x) = -35x \] - **Bring Down:** The next term \(-10\). 6. **Final Division Step** - **Divide:** \( -35x \div x = -35 \) - **Write:** \( -35 \) above the division bar. \[ \begin{array}{r|llll} & 3x^2 & +17x & -35 & \\ x + 2 \, ) & 3x^3 & +23x^2 & -x & -10 \\ & \underline{3x^3} & +6x^2 & & \\ & & 17x^2 & -x & \\ & & \underline{17x^2} & +34x & \\ & & & -35x & -10 \\ & & & \underline{-35x} & -70 \\ & & & & 60 \\ \end{array} \] 7. **Multiply and Subtract One Last Time** - **Multiply:** \( -35 \times (x + 2) = -35x - 70 \) - **Subtract:** \[ (-35x - 10) - (-35x - 70) = 60 \] ### Final Result - **Quotient:** \( 3x^2 + 17x - 35 \) - **Remainder:** \( 60 \) So, the division can be expressed as: \[ \frac{3x^{3} + 23x^{2} - x - 10}{x + 2} = 3x^2 + 17x - 35 + \frac{60}{x + 2} \] **Summary:** \[ 3x^{3} + 23x^{2} - x - 10 = (x + 2)(3x^2 + 17x - 35) + 60 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To divide \( 3x^3 + 23x^2 - x - 10 \) by \( x + 2 \) using long division, we start by dividing the leading term \( 3x^3 \) by \( x \) to get \( 3x^2 \). We then multiply \( 3x^2 \) by \( x + 2 \) to yield \( 3x^3 + 6x^2 \) and subtract this from the original polynomial. After simplification, we continue the process until we reach a remainder that is either a lower degree than the divisor or zero. Following through with this division step-by-step, we find that the result is \( 3x^2 + 11x - 23 \) with a remainder of \( 46 \). Therefore, we express the final result as: \[ 3x^2 + 11x - 23 + \frac{46}{x + 2} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy