Question
upstudy study bank question image url

Al calcular el \( \lim _{x \rightarrow 0+} \frac{\ln (3 x)-1}{2-\ln (3 x)} \) se obtiene: a. \( -1 / 2 \) b. -1 c. -2 d. \( -1 / 3 \)

Ask by Burgess Todd. in Colombia
Nov 20,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

El resultado del límite es -1. La respuesta correcta es b. -1.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Mind Expander

Primero, al calcular el límite \( \lim _{x \rightarrow 0+} \frac{\ln (3 x)-1}{2-\ln (3 x)} \), sustituimos \( x \) por valores cercanos a 0 desde la derecha, lo que hace que \( \ln(3x) \) tienda a \( -\infty \). Así, tenemos \( \frac{-\infty - 1}{2 - (-\infty)} \), lo que se simplifica a \( \frac{-\infty}{\infty} \), creando una forma indeterminada. Para resolverlo, aplicamos L'Hôpital: Calculamos la derivada del numerador y denominador: 1. Derivada del numerador: \( \frac{d}{dx}[\ln(3x) - 1] = \frac{3}{3x} = \frac{1}{x} \). 2. Derivada del denominador: \( \frac{d}{dx}[2 - \ln(3x)] = -\frac{1}{3x} \cdot 3 = -\frac{1}{x} \). Entonces, aplicamos L'Hôpital: \[ \lim _{x \rightarrow 0+} \frac{\ln (3 x)-1}{2-\ln (3 x)} = \lim _{x \rightarrow 0+} \frac{\frac{1}{x}}{-\frac{1}{x}} = \lim _{x \rightarrow 0+} -1 = -1. \] Por lo tanto, la respuesta correcta es **b. -1**.

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy