Question
upstudy study bank question image url

Simplify. \[ \frac{\left(4 x^{4}\right)^{2}}{\left(3 x^{5}\right)^{3}} \]

Ask by Ryan Hodges. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The simplified expression is \( \frac{16}{27x^7} \).

Solution

To simplify the expression   [(4x⁴)²] / [(3x⁵)³], follow these steps: 1. First, simplify the numerator, (4x⁴)²:   Multiply the exponents: 4² = 16 and (x⁴)² = x⁸.   So, the numerator becomes 16x⁸. 2. Next, simplify the denominator, (3x⁵)³:   Calculate 3³ = 27 and (x⁵)³ = x¹⁵.   So, the denominator becomes 27x¹⁵. 3. Now, write the simplified fraction:   16x⁸ / 27x¹⁵. 4. Divide the powers of x by subtracting the exponents (x⁸ / x¹⁵ = x^(8-15) = x⁻⁷):   The expression becomes (16/27) x⁻⁷. 5. Finally, rewrite x⁻⁷ as 1/x⁷:   So, the final simplified form is 16 / (27x⁷). Thus, the simplified expression is   16 / (27x⁷).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify the expression \(\frac{\left(4 x^{4}\right)^{2}}{\left(3 x^{5}\right)^{3}}\), let's break it down step by step. First, we simplify the numerator \((4 x^{4})^{2}\): \[ (4 x^{4})^{2} = 4^{2} \cdot (x^{4})^{2} = 16 \cdot x^{8} = 16 x^{8}. \] Next, we simplify the denominator \((3 x^{5})^{3}\): \[ (3 x^{5})^{3} = 3^{3} \cdot (x^{5})^{3} = 27 \cdot x^{15} = 27 x^{15}. \] Now we can rewrite the entire expression: \[ \frac{16 x^{8}}{27 x^{15}}. \] To simplify further, we divide the coefficients and the powers of \(x\): \[ = \frac{16}{27} \cdot \frac{x^{8}}{x^{15}}. \] When dividing powers with the same base, we subtract the exponents: \[ \frac{x^{8}}{x^{15}} = x^{8 - 15} = x^{-7}. \] Putting it all together, we have: \[ \frac{16}{27} x^{-7}. \] We can express \(x^{-7}\) as \(\frac{1}{x^{7}}\): \[ = \frac{16}{27} \cdot \frac{1}{x^{7}} = \frac{16}{27 x^{7}}. \] Thus, the simplified expression is: \[ \frac{16}{27 x^{7}}. \]

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy