Question
upstudy study bank question image url

Chapter 4 review 1. Stay whether the function is a polynomial or not. If it is, write it in standard form. \( \begin{array}{ll}\text { a) } f(x)=-3 x+5 x^{3}-6 x^{2}+2 & \text { b) } h(x)=3 x^{4}+2 x-\frac{5}{x}+9 x^{3}-7 \\ \text { c) } f(x)=9 x^{4}+8 x^{3}-6 x^{-2}+2 x & \text { d) } g(x)=\sqrt{3}-12 x+13 x^{2} \\ \text { e) } p(x)=\frac{1}{2} x^{2}+3 x-4 x^{3}+6 x^{1}-1 & \text { f) } h(x)=\frac{5}{3} x^{2}-\sqrt{7} x^{4}+8 x^{3}-\frac{1}{2}+x\end{array} \)

Ask by Guzman Fitzgerald. in the United States
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

| Part | Is Polynomial? | Standard Form | |------|----------------|---------------| | a) | Yes | \( 5x^{3} - 6x^{2} - 3x + 2 \) | | b) | No | — | | c) | No | — | | d) | Yes | \( 13x^{2} - 12x + \sqrt{3} \) | | e) | Yes | \( -4x^{3} + \frac{1}{2}x^{2} + 9x - 1 \) | | f) | Yes | \( -\sqrt{7}x^{4} + 8x^{3} + \frac{5}{3}x^{2} + x - \frac{1}{2} \) |

Solution

Let's analyze each function to determine whether it is a polynomial. Recall that a **polynomial** is an expression consisting of variables (also called indeterminates) and coefficients, combined using only addition, subtraction, multiplication, and non-negative integer exponents of variables. If a function is a polynomial, we'll rewrite it in **standard form**, which arranges the terms in descending order of their exponents. ### a) \( f(x) = -3x + 5x^{3} - 6x^{2} + 2 \) **Analysis:** - All exponents of \( x \) are non-negative integers (3, 2, 1, 0). - No variables have exponents as fractions, negatives, or are under radicals. **Conclusion:** - **Polynomial:** Yes - **Standard Form:** \( f(x) = 5x^{3} - 6x^{2} - 3x + 2 \) ### b) \( h(x) = 3x^{4} + 2x - \frac{5}{x} + 9x^{3} - 7 \) **Analysis:** - The term \( \frac{5}{x} \) can be rewritten as \( -5x^{-1} \), which has a negative exponent. - Negative exponents are not allowed in polynomials. **Conclusion:** - **Polynomial:** No ### c) \( f(x) = 9x^{4} + 8x^{3} - 6x^{-2} + 2x \) **Analysis:** - The term \( -6x^{-2} \) has a negative exponent. - Negative exponents are not allowed in polynomials. **Conclusion:** - **Polynomial:** No ### d) \( g(x) = \sqrt{3} - 12x + 13x^{2} \) **Analysis:** - All exponents of \( x \) are non-negative integers (2, 1, 0). - \( \sqrt{3} \) is a constant term and does not involve any variables. **Conclusion:** - **Polynomial:** Yes - **Standard Form:** \( g(x) = 13x^{2} - 12x + \sqrt{3} \) ### e) \( p(x) = \frac{1}{2}x^{2} + 3x - 4x^{3} + 6x^{1} - 1 \) **Analysis:** - All exponents of \( x \) are non-negative integers (3, 2, 1, 0). - Combine like terms if necessary. **Simplification:** - Combine \( 3x \) and \( 6x \): \( 3x + 6x = 9x \) **Conclusion:** - **Polynomial:** Yes - **Standard Form:** \( p(x) = -4x^{3} + \frac{1}{2}x^{2} + 9x - 1 \) ### f) \( h(x) = \frac{5}{3}x^{2} - \sqrt{7}x^{4} + 8x^{3} - \frac{1}{2} + x \) **Analysis:** - All exponents of \( x \) are non-negative integers (4, 3, 2, 1, 0). - Coefficients can be constants, including radicals or fractions. **Conclusion:** - **Polynomial:** Yes - **Standard Form:** \( h(x) = -\sqrt{7}x^{4} + 8x^{3} + \frac{5}{3}x^{2} + x - \frac{1}{2} \) --- **Summary:** | Part | Is Polynomial? | Standard Form | |------|----------------|---------------| | a) | Yes | \( 5x^{3} - 6x^{2} - 3x + 2 \) | | b) | No | — | | c) | No | — | | d) | Yes | \( 13x^{2} - 12x + \sqrt{3} \) | | e) | Yes | \( -4x^{3} + \frac{1}{2}x^{2} + 9x - 1 \) | | f) | Yes | \( -\sqrt{7}x^{4} + 8x^{3} + \frac{5}{3}x^{2} + x - \frac{1}{2} \) | If you have any further questions or need additional explanations, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Let's break down each function to see if it's a polynomial and, if it is, write it in standard form. a) \( f(x) = -3x + 5x^3 - 6x^2 + 2 \) Yes, this is a polynomial! In standard form: \( f(x) = 5x^3 - 6x^2 - 3x + 2 \). b) \( h(x) = 3x^4 + 2x - \frac{5}{x} + 9x^3 - 7 \) No, this is not a polynomial because of the term \( -\frac{5}{x} \) (it has a negative power). c) \( f(x) = 9x^4 + 8x^3 - 6x^{-2} + 2x \) No, this is not a polynomial due to the term \( -6x^{-2} \). d) \( g(x) = \sqrt{3} - 12x + 13x^2 \) Yes, this is a polynomial! In standard form: \( g(x) = 13x^2 - 12x + \sqrt{3} \). e) \( p(x) = \frac{1}{2}x^2 + 3x - 4x^3 + 6x^1 - 1 \) Yes, this is a polynomial! In standard form: \( p(x) = -4x^3 + \frac{1}{2}x^2 + 6x - 1 \). f) \( h(x) = \frac{5}{3}x^2 - \sqrt{7}x^4 + 8x^3 - \frac{1}{2} + x \) Yes, this is a polynomial! In standard form: \( h(x) = -\sqrt{7}x^4 + 8x^3 + \frac{5}{3}x^2 + x - \frac{1}{2} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy