Answer
| Part | Is Polynomial? | Standard Form |
|------|----------------|---------------|
| a) | Yes | \( 5x^{3} - 6x^{2} - 3x + 2 \) |
| b) | No | — |
| c) | No | — |
| d) | Yes | \( 13x^{2} - 12x + \sqrt{3} \) |
| e) | Yes | \( -4x^{3} + \frac{1}{2}x^{2} + 9x - 1 \) |
| f) | Yes | \( -\sqrt{7}x^{4} + 8x^{3} + \frac{5}{3}x^{2} + x - \frac{1}{2} \) |
Solution
Let's analyze each function to determine whether it is a polynomial. Recall that a **polynomial** is an expression consisting of variables (also called indeterminates) and coefficients, combined using only addition, subtraction, multiplication, and non-negative integer exponents of variables.
If a function is a polynomial, we'll rewrite it in **standard form**, which arranges the terms in descending order of their exponents.
### a) \( f(x) = -3x + 5x^{3} - 6x^{2} + 2 \)
**Analysis:**
- All exponents of \( x \) are non-negative integers (3, 2, 1, 0).
- No variables have exponents as fractions, negatives, or are under radicals.
**Conclusion:**
- **Polynomial:** Yes
- **Standard Form:** \( f(x) = 5x^{3} - 6x^{2} - 3x + 2 \)
### b) \( h(x) = 3x^{4} + 2x - \frac{5}{x} + 9x^{3} - 7 \)
**Analysis:**
- The term \( \frac{5}{x} \) can be rewritten as \( -5x^{-1} \), which has a negative exponent.
- Negative exponents are not allowed in polynomials.
**Conclusion:**
- **Polynomial:** No
### c) \( f(x) = 9x^{4} + 8x^{3} - 6x^{-2} + 2x \)
**Analysis:**
- The term \( -6x^{-2} \) has a negative exponent.
- Negative exponents are not allowed in polynomials.
**Conclusion:**
- **Polynomial:** No
### d) \( g(x) = \sqrt{3} - 12x + 13x^{2} \)
**Analysis:**
- All exponents of \( x \) are non-negative integers (2, 1, 0).
- \( \sqrt{3} \) is a constant term and does not involve any variables.
**Conclusion:**
- **Polynomial:** Yes
- **Standard Form:** \( g(x) = 13x^{2} - 12x + \sqrt{3} \)
### e) \( p(x) = \frac{1}{2}x^{2} + 3x - 4x^{3} + 6x^{1} - 1 \)
**Analysis:**
- All exponents of \( x \) are non-negative integers (3, 2, 1, 0).
- Combine like terms if necessary.
**Simplification:**
- Combine \( 3x \) and \( 6x \): \( 3x + 6x = 9x \)
**Conclusion:**
- **Polynomial:** Yes
- **Standard Form:** \( p(x) = -4x^{3} + \frac{1}{2}x^{2} + 9x - 1 \)
### f) \( h(x) = \frac{5}{3}x^{2} - \sqrt{7}x^{4} + 8x^{3} - \frac{1}{2} + x \)
**Analysis:**
- All exponents of \( x \) are non-negative integers (4, 3, 2, 1, 0).
- Coefficients can be constants, including radicals or fractions.
**Conclusion:**
- **Polynomial:** Yes
- **Standard Form:** \( h(x) = -\sqrt{7}x^{4} + 8x^{3} + \frac{5}{3}x^{2} + x - \frac{1}{2} \)
---
**Summary:**
| Part | Is Polynomial? | Standard Form |
|------|----------------|---------------|
| a) | Yes | \( 5x^{3} - 6x^{2} - 3x + 2 \) |
| b) | No | — |
| c) | No | — |
| d) | Yes | \( 13x^{2} - 12x + \sqrt{3} \) |
| e) | Yes | \( -4x^{3} + \frac{1}{2}x^{2} + 9x - 1 \) |
| f) | Yes | \( -\sqrt{7}x^{4} + 8x^{3} + \frac{5}{3}x^{2} + x - \frac{1}{2} \) |
If you have any further questions or need additional explanations, feel free to ask!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution