Answer
Here are the solutions for the equations after expanding the brackets:
1. \( a = \frac{86}{13} \) or approximately 6.615
2. \( a = \frac{9}{2} \) or 4.5
3. \( a = 2 \)
4. \( a = 3 \)
5. \( a = 1 \)
6. \( a = 7 \)
7. \( b = -\frac{11}{6} \) or approximately -1.833
8. \( b = 12 \)
9. \( a = 2 \)
10. \( m = \frac{2}{13} \) or approximately 0.154
11. \( b = \frac{114}{23} \) or approximately 4.957
12. \( n = -\frac{237}{122} \) or approximately -1.943
13. \( a = \frac{928}{393} \) or approximately 2.36
14. \( a = \frac{1}{50} \) or 0.02
15. \( b = \frac{38}{39} \) or approximately 0.974
Solution
Solve the equation by following steps:
- step0: Solve for \(a\):
\(9\left(a-1\right)=18\)
- step1: Divide both sides:
\(\frac{9\left(a-1\right)}{9}=\frac{18}{9}\)
- step2: Divide the numbers:
\(a-1=2\)
- step3: Move the constant to the right side:
\(a=2+1\)
- step4: Add the numbers:
\(a=3\)
Solve the equation \( 5(a+7)=45 \).
Solve the equation by following steps:
- step0: Solve for \(a\):
\(5\left(a+7\right)=45\)
- step1: Divide both sides:
\(\frac{5\left(a+7\right)}{5}=\frac{45}{5}\)
- step2: Divide the numbers:
\(a+7=9\)
- step3: Move the constant to the right side:
\(a=9-7\)
- step4: Subtract the numbers:
\(a=2\)
Solve the equation \( 13(a-6)=8 \).
Solve the equation by following steps:
- step0: Solve for \(a\):
\(13\left(a-6\right)=8\)
- step1: Divide both sides:
\(\frac{13\left(a-6\right)}{13}=\frac{8}{13}\)
- step2: Divide the numbers:
\(a-6=\frac{8}{13}\)
- step3: Move the constant to the right side:
\(a=\frac{8}{13}+6\)
- step4: Add the numbers:
\(a=\frac{86}{13}\)
Solve the equation \( 126(n+2)=4 n+15 \).
Solve the equation by following steps:
- step0: Solve for \(n\):
\(126\left(n+2\right)=4n+15\)
- step1: Expand the expression:
\(126n+252=4n+15\)
- step2: Move the expression to the left side:
\(126n-4n=15-252\)
- step3: Add and subtract:
\(122n=15-252\)
- step4: Add and subtract:
\(122n=-237\)
- step5: Divide both sides:
\(\frac{122n}{122}=\frac{-237}{122}\)
- step6: Divide the numbers:
\(n=-\frac{237}{122}\)
Solve the equation \( 107 m-4=3(m+4) \).
Solve the equation by following steps:
- step0: Solve for \(m\):
\(107m-4=3\left(m+4\right)\)
- step1: Expand the expression:
\(107m-4=3m+12\)
- step2: Move the expression to the left side:
\(107m-3m=12+4\)
- step3: Add and subtract:
\(104m=12+4\)
- step4: Add and subtract:
\(104m=16\)
- step5: Divide both sides:
\(\frac{104m}{104}=\frac{16}{104}\)
- step6: Divide the numbers:
\(m=\frac{2}{13}\)
Solve the equation \( 7(a-3)=2(a+7) \).
Solve the equation by following steps:
- step0: Solve for \(a\):
\(7\left(a-3\right)=2\left(a+7\right)\)
- step1: Calculate:
\(7a-21=2\left(a+7\right)\)
- step2: Calculate:
\(7a-21=2a+14\)
- step3: Move the expression to the left side:
\(7a-21-\left(2a+14\right)=0\)
- step4: Calculate:
\(5a-35=0\)
- step5: Move the constant to the right side:
\(5a=0+35\)
- step6: Remove 0:
\(5a=35\)
- step7: Divide both sides:
\(\frac{5a}{5}=\frac{35}{5}\)
- step8: Divide the numbers:
\(a=7\)
Solve the equation \( 76(b+2)=4(b+5) \).
Solve the equation by following steps:
- step0: Solve for \(b\):
\(76\left(b+2\right)=4\left(b+5\right)\)
- step1: Calculate:
\(76b+152=4\left(b+5\right)\)
- step2: Calculate:
\(76b+152=4b+20\)
- step3: Move the expression to the left side:
\(76b+152-\left(4b+20\right)=0\)
- step4: Calculate:
\(72b+132=0\)
- step5: Move the constant to the right side:
\(72b=0-132\)
- step6: Remove 0:
\(72b=-132\)
- step7: Divide both sides:
\(\frac{72b}{72}=\frac{-132}{72}\)
- step8: Divide the numbers:
\(b=-\frac{11}{6}\)
Solve the equation \( 5(2 b-3)=7(b+3) \).
Solve the equation by following steps:
- step0: Solve for \(b\):
\(5\left(2b-3\right)=7\left(b+3\right)\)
- step1: Calculate:
\(10b-15=7\left(b+3\right)\)
- step2: Calculate:
\(10b-15=7b+21\)
- step3: Move the expression to the left side:
\(10b-15-\left(7b+21\right)=0\)
- step4: Calculate:
\(3b-36=0\)
- step5: Move the constant to the right side:
\(3b=0+36\)
- step6: Remove 0:
\(3b=36\)
- step7: Divide both sides:
\(\frac{3b}{3}=\frac{36}{3}\)
- step8: Divide the numbers:
\(b=12\)
Solve the equation \( 8(a-2)=20 \).
Solve the equation by following steps:
- step0: Solve for \(a\):
\(8\left(a-2\right)=20\)
- step1: Divide both sides:
\(\frac{8\left(a-2\right)}{8}=\frac{20}{8}\)
- step2: Divide the numbers:
\(a-2=\frac{5}{2}\)
- step3: Move the constant to the right side:
\(a=\frac{5}{2}+2\)
- step4: Add the numbers:
\(a=\frac{9}{2}\)
Solve the equation \( 6(2 a+3)=30 a \).
Solve the equation by following steps:
- step0: Solve for \(a\):
\(6\left(2a+3\right)=30a\)
- step1: Expand the expression:
\(12a+18=30a\)
- step2: Move the variable to the left side:
\(12a+18-30a=0\)
- step3: Subtract the terms:
\(-18a+18=0\)
- step4: Move the constant to the right side:
\(-18a=0-18\)
- step5: Remove 0:
\(-18a=-18\)
- step6: Change the signs:
\(18a=18\)
- step7: Divide both sides:
\(\frac{18a}{18}=\frac{18}{18}\)
- step8: Divide the numbers:
\(a=1\)
Solve the equation \( 114(5-b)=b \).
Solve the equation by following steps:
- step0: Solve for \(b\):
\(114\left(5-b\right)=b\)
- step1: Expand the expression:
\(570-114b=b\)
- step2: Move the variable to the left side:
\(570-114b-b=0\)
- step3: Subtract the terms:
\(570-115b=0\)
- step4: Move the constant to the right side:
\(-115b=0-570\)
- step5: Remove 0:
\(-115b=-570\)
- step6: Change the signs:
\(115b=570\)
- step7: Divide both sides:
\(\frac{115b}{115}=\frac{570}{115}\)
- step8: Divide the numbers:
\(b=\frac{114}{23}\)
Solve the equation \( 3(a+6)=a+22 \).
Solve the equation by following steps:
- step0: Solve for \(a\):
\(3\left(a+6\right)=a+22\)
- step1: Expand the expression:
\(3a+18=a+22\)
- step2: Move the expression to the left side:
\(3a-a=22-18\)
- step3: Add and subtract:
\(2a=22-18\)
- step4: Add and subtract:
\(2a=4\)
- step5: Divide both sides:
\(\frac{2a}{2}=\frac{4}{2}\)
- step6: Divide the numbers:
\(a=2\)
Solve the equation \( 145 a-(1-2 a)=5-3(1+a) \).
Solve the equation by following steps:
- step0: Solve for \(a\):
\(145a-\left(1-2a\right)=5-3\left(1+a\right)\)
- step1: Subtract the terms:
\(147a-1=5-3\left(1+a\right)\)
- step2: Move the expression to the left side:
\(147a-1-\left(5-3\left(1+a\right)\right)=0\)
- step3: Subtract the terms:
\(147a-6+3\left(1+a\right)=0\)
- step4: Calculate:
\(150a-3=0\)
- step5: Move the constant to the right side:
\(150a=0+3\)
- step6: Remove 0:
\(150a=3\)
- step7: Divide both sides:
\(\frac{150a}{150}=\frac{3}{150}\)
- step8: Divide the numbers:
\(a=\frac{1}{50}\)
Solve the equation \( 132(3 a-7)+4=3(a+2)+2 \).
Solve the equation by following steps:
- step0: Solve for \(a\):
\(132\left(3a-7\right)+4=3\left(a+2\right)+2\)
- step1: Move the expression to the left side:
\(132\left(3a-7\right)+4-\left(3\left(a+2\right)+2\right)=0\)
- step2: Calculate:
\(132\left(3a-7\right)+2-3\left(a+2\right)=0\)
- step3: Calculate:
\(393a-928=0\)
- step4: Move the constant to the right side:
\(393a=0+928\)
- step5: Remove 0:
\(393a=928\)
- step6: Divide both sides:
\(\frac{393a}{393}=\frac{928}{393}\)
- step7: Divide the numbers:
\(a=\frac{928}{393}\)
Solve the equation \( 154(b-1)-3(b-2)=4-5 b \).
Solve the equation by following steps:
- step0: Solve for \(b\):
\(154\left(b-1\right)-3\left(b-2\right)=4-5b\)
- step1: Move the expression to the left side:
\(154\left(b-1\right)-3\left(b-2\right)-\left(4-5b\right)=0\)
- step2: Remove the parentheses:
\(154\left(b-1\right)-3\left(b-2\right)-4+5b=0\)
- step3: Calculate:
\(156b-152=0\)
- step4: Move the constant to the right side:
\(156b=0+152\)
- step5: Remove 0:
\(156b=152\)
- step6: Divide both sides:
\(\frac{156b}{156}=\frac{152}{156}\)
- step7: Divide the numbers:
\(b=\frac{38}{39}\)
Here are the solutions for the equations after expanding the brackets:
1. **Equation:** \( 13(a-6)=8 \)
**Solution:**
\[
a = \frac{86}{13} \quad \text{or} \quad a \approx 6.615384615
\]
2. **Equation:** \( 8(a-2)=20 \)
**Solution:**
\[
a = \frac{9}{2} \quad \text{or} \quad a = 4.5
\]
3. **Equation:** \( 5(a+7)=45 \)
**Solution:**
\[
a = 2
\]
4. **Equation:** \( 9(a-1)=18 \)
**Solution:**
\[
a = 3
\]
5. **Equation:** \( 6(2 a+3)=30 a \)
**Solution:**
\[
a = 1
\]
6. **Equation:** \( 7(a-3)=2(a+7) \)
**Solution:**
\[
a = 7
\]
7. **Equation:** \( 76(b+2)=4(b+5) \)
**Solution:**
\[
b = -\frac{11}{6} \quad \text{or} \quad b \approx -1.8333
\]
8. **Equation:** \( 5(2 b-3)=7(b+3) \)
**Solution:**
\[
b = 12
\]
9. **Equation:** \( 3(a+6)=a+22 \)
**Solution:**
\[
a = 2
\]
10. **Equation:** \( 107 m-4=3(m+4) \)
**Solution:**
\[
m = \frac{2}{13} \quad \text{or} \quad m \approx 0.1538461538
\]
11. **Equation:** \( 114(5-b)=b \)
**Solution:**
\[
b = \frac{114}{23} \quad \text{or} \quad b \approx 4.9565217391
\]
12. **Equation:** \( 126(n+2)=4 n+15 \)
**Solution:**
\[
n = -\frac{237}{122} \quad \text{or} \quad n \approx -1.94344262295
\]
13. **Equation:** \( 132(3 a-7)+4=3(a+2)+2 \)
**Solution:**
\[
a = \frac{928}{393} \quad \text{or} \quad a \approx 2.36
\]
14. **Equation:** \( 145 a-(1-2 a)=5-3(1+a) \)
**Solution:**
\[
a = \frac{1}{50} \quad \text{or} \quad a = 0.02
\]
15. **Equation:** \( 154(b-1)-3(b-2)=4-5 b \)
**Solution:**
\[
b = \frac{38}{39} \quad \text{or} \quad b \approx 0.97435897436
\]
If you need further assistance or explanations for any specific equation, feel free to ask!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution