Question
upstudy study bank question image url

Equations Expanding Brackets \( 13(a-6)=8 \) \( 2 \quad 8(a-2)=20 \) \( 3 \quad 5(a+7)=45 \) \( 4 \quad 9(a-1)=18 \) \( 5 \quad 6(2 a+3)=30 a \) \( 6 \quad 7(a-3)=2(a+7) \) \( 76(b+2)=4(b+5) \) \( 8 \quad 5(2 b-3)=7(b+3) \) \( 9 \quad 3(a+6)=a+22 \) \( 107 m-4=3(m+4) \) \( 114(5-b)=b \) \( 126(n+2)=4 n+15 \) \( 132(3 a-7)+4=3(a+2)+2 \) \( 145 a-(1-2 a)=5-3(1+a) \) \( 154(b-1)-3(b-2)=4-5 b \)

Ask by Carrillo Reyes. in South Africa
Jan 30,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the solutions for the equations after expanding the brackets: 1. \( a = \frac{86}{13} \) or approximately 6.615 2. \( a = \frac{9}{2} \) or 4.5 3. \( a = 2 \) 4. \( a = 3 \) 5. \( a = 1 \) 6. \( a = 7 \) 7. \( b = -\frac{11}{6} \) or approximately -1.833 8. \( b = 12 \) 9. \( a = 2 \) 10. \( m = \frac{2}{13} \) or approximately 0.154 11. \( b = \frac{114}{23} \) or approximately 4.957 12. \( n = -\frac{237}{122} \) or approximately -1.943 13. \( a = \frac{928}{393} \) or approximately 2.36 14. \( a = \frac{1}{50} \) or 0.02 15. \( b = \frac{38}{39} \) or approximately 0.974

Solution

Solve the equation by following steps: - step0: Solve for \(a\): \(9\left(a-1\right)=18\) - step1: Divide both sides: \(\frac{9\left(a-1\right)}{9}=\frac{18}{9}\) - step2: Divide the numbers: \(a-1=2\) - step3: Move the constant to the right side: \(a=2+1\) - step4: Add the numbers: \(a=3\) Solve the equation \( 5(a+7)=45 \). Solve the equation by following steps: - step0: Solve for \(a\): \(5\left(a+7\right)=45\) - step1: Divide both sides: \(\frac{5\left(a+7\right)}{5}=\frac{45}{5}\) - step2: Divide the numbers: \(a+7=9\) - step3: Move the constant to the right side: \(a=9-7\) - step4: Subtract the numbers: \(a=2\) Solve the equation \( 13(a-6)=8 \). Solve the equation by following steps: - step0: Solve for \(a\): \(13\left(a-6\right)=8\) - step1: Divide both sides: \(\frac{13\left(a-6\right)}{13}=\frac{8}{13}\) - step2: Divide the numbers: \(a-6=\frac{8}{13}\) - step3: Move the constant to the right side: \(a=\frac{8}{13}+6\) - step4: Add the numbers: \(a=\frac{86}{13}\) Solve the equation \( 126(n+2)=4 n+15 \). Solve the equation by following steps: - step0: Solve for \(n\): \(126\left(n+2\right)=4n+15\) - step1: Expand the expression: \(126n+252=4n+15\) - step2: Move the expression to the left side: \(126n-4n=15-252\) - step3: Add and subtract: \(122n=15-252\) - step4: Add and subtract: \(122n=-237\) - step5: Divide both sides: \(\frac{122n}{122}=\frac{-237}{122}\) - step6: Divide the numbers: \(n=-\frac{237}{122}\) Solve the equation \( 107 m-4=3(m+4) \). Solve the equation by following steps: - step0: Solve for \(m\): \(107m-4=3\left(m+4\right)\) - step1: Expand the expression: \(107m-4=3m+12\) - step2: Move the expression to the left side: \(107m-3m=12+4\) - step3: Add and subtract: \(104m=12+4\) - step4: Add and subtract: \(104m=16\) - step5: Divide both sides: \(\frac{104m}{104}=\frac{16}{104}\) - step6: Divide the numbers: \(m=\frac{2}{13}\) Solve the equation \( 7(a-3)=2(a+7) \). Solve the equation by following steps: - step0: Solve for \(a\): \(7\left(a-3\right)=2\left(a+7\right)\) - step1: Calculate: \(7a-21=2\left(a+7\right)\) - step2: Calculate: \(7a-21=2a+14\) - step3: Move the expression to the left side: \(7a-21-\left(2a+14\right)=0\) - step4: Calculate: \(5a-35=0\) - step5: Move the constant to the right side: \(5a=0+35\) - step6: Remove 0: \(5a=35\) - step7: Divide both sides: \(\frac{5a}{5}=\frac{35}{5}\) - step8: Divide the numbers: \(a=7\) Solve the equation \( 76(b+2)=4(b+5) \). Solve the equation by following steps: - step0: Solve for \(b\): \(76\left(b+2\right)=4\left(b+5\right)\) - step1: Calculate: \(76b+152=4\left(b+5\right)\) - step2: Calculate: \(76b+152=4b+20\) - step3: Move the expression to the left side: \(76b+152-\left(4b+20\right)=0\) - step4: Calculate: \(72b+132=0\) - step5: Move the constant to the right side: \(72b=0-132\) - step6: Remove 0: \(72b=-132\) - step7: Divide both sides: \(\frac{72b}{72}=\frac{-132}{72}\) - step8: Divide the numbers: \(b=-\frac{11}{6}\) Solve the equation \( 5(2 b-3)=7(b+3) \). Solve the equation by following steps: - step0: Solve for \(b\): \(5\left(2b-3\right)=7\left(b+3\right)\) - step1: Calculate: \(10b-15=7\left(b+3\right)\) - step2: Calculate: \(10b-15=7b+21\) - step3: Move the expression to the left side: \(10b-15-\left(7b+21\right)=0\) - step4: Calculate: \(3b-36=0\) - step5: Move the constant to the right side: \(3b=0+36\) - step6: Remove 0: \(3b=36\) - step7: Divide both sides: \(\frac{3b}{3}=\frac{36}{3}\) - step8: Divide the numbers: \(b=12\) Solve the equation \( 8(a-2)=20 \). Solve the equation by following steps: - step0: Solve for \(a\): \(8\left(a-2\right)=20\) - step1: Divide both sides: \(\frac{8\left(a-2\right)}{8}=\frac{20}{8}\) - step2: Divide the numbers: \(a-2=\frac{5}{2}\) - step3: Move the constant to the right side: \(a=\frac{5}{2}+2\) - step4: Add the numbers: \(a=\frac{9}{2}\) Solve the equation \( 6(2 a+3)=30 a \). Solve the equation by following steps: - step0: Solve for \(a\): \(6\left(2a+3\right)=30a\) - step1: Expand the expression: \(12a+18=30a\) - step2: Move the variable to the left side: \(12a+18-30a=0\) - step3: Subtract the terms: \(-18a+18=0\) - step4: Move the constant to the right side: \(-18a=0-18\) - step5: Remove 0: \(-18a=-18\) - step6: Change the signs: \(18a=18\) - step7: Divide both sides: \(\frac{18a}{18}=\frac{18}{18}\) - step8: Divide the numbers: \(a=1\) Solve the equation \( 114(5-b)=b \). Solve the equation by following steps: - step0: Solve for \(b\): \(114\left(5-b\right)=b\) - step1: Expand the expression: \(570-114b=b\) - step2: Move the variable to the left side: \(570-114b-b=0\) - step3: Subtract the terms: \(570-115b=0\) - step4: Move the constant to the right side: \(-115b=0-570\) - step5: Remove 0: \(-115b=-570\) - step6: Change the signs: \(115b=570\) - step7: Divide both sides: \(\frac{115b}{115}=\frac{570}{115}\) - step8: Divide the numbers: \(b=\frac{114}{23}\) Solve the equation \( 3(a+6)=a+22 \). Solve the equation by following steps: - step0: Solve for \(a\): \(3\left(a+6\right)=a+22\) - step1: Expand the expression: \(3a+18=a+22\) - step2: Move the expression to the left side: \(3a-a=22-18\) - step3: Add and subtract: \(2a=22-18\) - step4: Add and subtract: \(2a=4\) - step5: Divide both sides: \(\frac{2a}{2}=\frac{4}{2}\) - step6: Divide the numbers: \(a=2\) Solve the equation \( 145 a-(1-2 a)=5-3(1+a) \). Solve the equation by following steps: - step0: Solve for \(a\): \(145a-\left(1-2a\right)=5-3\left(1+a\right)\) - step1: Subtract the terms: \(147a-1=5-3\left(1+a\right)\) - step2: Move the expression to the left side: \(147a-1-\left(5-3\left(1+a\right)\right)=0\) - step3: Subtract the terms: \(147a-6+3\left(1+a\right)=0\) - step4: Calculate: \(150a-3=0\) - step5: Move the constant to the right side: \(150a=0+3\) - step6: Remove 0: \(150a=3\) - step7: Divide both sides: \(\frac{150a}{150}=\frac{3}{150}\) - step8: Divide the numbers: \(a=\frac{1}{50}\) Solve the equation \( 132(3 a-7)+4=3(a+2)+2 \). Solve the equation by following steps: - step0: Solve for \(a\): \(132\left(3a-7\right)+4=3\left(a+2\right)+2\) - step1: Move the expression to the left side: \(132\left(3a-7\right)+4-\left(3\left(a+2\right)+2\right)=0\) - step2: Calculate: \(132\left(3a-7\right)+2-3\left(a+2\right)=0\) - step3: Calculate: \(393a-928=0\) - step4: Move the constant to the right side: \(393a=0+928\) - step5: Remove 0: \(393a=928\) - step6: Divide both sides: \(\frac{393a}{393}=\frac{928}{393}\) - step7: Divide the numbers: \(a=\frac{928}{393}\) Solve the equation \( 154(b-1)-3(b-2)=4-5 b \). Solve the equation by following steps: - step0: Solve for \(b\): \(154\left(b-1\right)-3\left(b-2\right)=4-5b\) - step1: Move the expression to the left side: \(154\left(b-1\right)-3\left(b-2\right)-\left(4-5b\right)=0\) - step2: Remove the parentheses: \(154\left(b-1\right)-3\left(b-2\right)-4+5b=0\) - step3: Calculate: \(156b-152=0\) - step4: Move the constant to the right side: \(156b=0+152\) - step5: Remove 0: \(156b=152\) - step6: Divide both sides: \(\frac{156b}{156}=\frac{152}{156}\) - step7: Divide the numbers: \(b=\frac{38}{39}\) Here are the solutions for the equations after expanding the brackets: 1. **Equation:** \( 13(a-6)=8 \) **Solution:** \[ a = \frac{86}{13} \quad \text{or} \quad a \approx 6.615384615 \] 2. **Equation:** \( 8(a-2)=20 \) **Solution:** \[ a = \frac{9}{2} \quad \text{or} \quad a = 4.5 \] 3. **Equation:** \( 5(a+7)=45 \) **Solution:** \[ a = 2 \] 4. **Equation:** \( 9(a-1)=18 \) **Solution:** \[ a = 3 \] 5. **Equation:** \( 6(2 a+3)=30 a \) **Solution:** \[ a = 1 \] 6. **Equation:** \( 7(a-3)=2(a+7) \) **Solution:** \[ a = 7 \] 7. **Equation:** \( 76(b+2)=4(b+5) \) **Solution:** \[ b = -\frac{11}{6} \quad \text{or} \quad b \approx -1.8333 \] 8. **Equation:** \( 5(2 b-3)=7(b+3) \) **Solution:** \[ b = 12 \] 9. **Equation:** \( 3(a+6)=a+22 \) **Solution:** \[ a = 2 \] 10. **Equation:** \( 107 m-4=3(m+4) \) **Solution:** \[ m = \frac{2}{13} \quad \text{or} \quad m \approx 0.1538461538 \] 11. **Equation:** \( 114(5-b)=b \) **Solution:** \[ b = \frac{114}{23} \quad \text{or} \quad b \approx 4.9565217391 \] 12. **Equation:** \( 126(n+2)=4 n+15 \) **Solution:** \[ n = -\frac{237}{122} \quad \text{or} \quad n \approx -1.94344262295 \] 13. **Equation:** \( 132(3 a-7)+4=3(a+2)+2 \) **Solution:** \[ a = \frac{928}{393} \quad \text{or} \quad a \approx 2.36 \] 14. **Equation:** \( 145 a-(1-2 a)=5-3(1+a) \) **Solution:** \[ a = \frac{1}{50} \quad \text{or} \quad a = 0.02 \] 15. **Equation:** \( 154(b-1)-3(b-2)=4-5 b \) **Solution:** \[ b = \frac{38}{39} \quad \text{or} \quad b \approx 0.97435897436 \] If you need further assistance or explanations for any specific equation, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Did you know that expanding brackets dates back to ancient civilizations? The Babylonians were some of the first to use algebraic expressions around 2000 BCE to solve problems related to land measurement and trade. They relied heavily on geometric representations and methods resembling today's algebraic techniques, laying the groundwork for modern mathematics! Now, let’s talk about real-world applications of expanding brackets! You’ll find this skill handy in various fields, especially in finance for calculating profit margins, or in construction when determining area and volume. Say you want to create a garden space; you'd use equations to plan dimensions, allowing you to expand and modify your designs while keeping everything organized. It's not just math—it's functional planning!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy