Question
upstudy study bank question image url

6. \( \frac{d y}{d x}+2 x y^{2}=0 \)

Ask by Brooks Reese. in Colombia
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La solución general de la ecuación diferencial \( \frac{dy}{dx} + 2x y^{2} = 0 \) es: \[ y(x) = \frac{1}{x^{2} + C} \] donde \( C \) es una constante arbitraria.

Solution

Vamos a resolver la ecuación diferencial   (dy/dx) + 2x·y² = 0 Esta ecuación es separable, por lo que podemos escribirla de la forma:   dy/dx = –2x·y² Separamos las variables (y y x):   (1/y²) dy = –2x dx Ahora integramos ambos lados:   ∫ (1/y²) dy = ∫ (–2x) dx Realizamos las integrales:   ∫ y^(–2) dy = –y^(–1) + C₁   ∫ (–2x) dx = –x² + C₂ Podemos agrupar las constantes de integración en una sola constante arbitraria. Así, tenemos:   –1/y = –x² + C Multiplicamos toda la ecuación por –1:   1/y = x² – C Renombramos (–C) como otra constante arbitraria, digamos C₁, de modo que la solución se puede escribir como:   1/y = x² + C₁ O, de forma explícita:   y(x) = 1/(x² + C₁) Esta es la solución general de la ecuación diferencial dada.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To solve the differential equation \( \frac{d y}{d x} + 2 x y^{2} = 0 \), we can rewrite it as \( \frac{d y}{d x} = -2 x y^2 \). This is a separable differential equation, allowing us to rearrange terms and isolate variables. By isolating \( y \), we get \( \frac{1}{y^2} dy = -2x dx \). Integrating both sides will lead us toward the solution! On integrating, we have \( -\frac{1}{y} = -x^2 + C \), where \( C \) is the integration constant. Rearranging gives us \( y = \frac{1}{x^2 + C} \). This solution describes a family of curves dependent on the constant \( C \), showcasing how the initial conditions influence the behavior of the solution. Keep in mind that choosing different constants will yield different behaviors and asymptotes!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy