Question
3. Use the distributive property to show that the equations are equal. Examples: \( a(b+c)=a \times b+a \times c \) \[ \begin{array}{l} a\left(b^{2}+c^{2}\right)=a \times b^{2}+a \times c^{2} \\ a(b-c)=a \times b-a \times c \\ a\left(b^{2}-c^{2}\right)=a \times b^{2}-a \times c^{2} \end{array} \] a. \( \left(b^{2}+c^{3}\right) d= \) b. \( c\left(b+d^{2}\right)= \) c. \( \left(b^{2}+d^{2}\right) \times c= \) E \( \square \) d. \( d \times\left(c+b^{2}\right)= \) e. \( \left(d^{2} \times b^{3}\right)+\left(d^{2} \times c^{3}\right)= \)
Ask by Rojas Barnett. in South Africa
Feb 18,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
\[
\begin{array}{l}
a. \ (b^{2}+c^{3}) d = b^{2}d + c^{3}d \\
b. \ c(b+d^{2}) = cb + cd^{2} \\
c. \ (b^{2}+d^{2}) \times c = b^{2}c + d^{2}c \\
d. \ d \times (c+b^{2}) = dc + db^{2} \\
e. \ (d^{2} \times b^{3}) + (d^{2} \times c^{3}) = d^{2}(b^{3} + c^{3})
\end{array}
\]
Solution
To show that the equations are equal using the distributive property, we will apply the property step by step for each expression provided. The distributive property states that \( a(b+c) = ab + ac \).
Let's go through each part:
### a. \( (b^{2}+c^{3}) d \)
Using the distributive property:
\[
(b^{2}+c^{3}) d = b^{2}d + c^{3}d
\]
### b. \( c(b+d^{2}) \)
Using the distributive property:
\[
c(b+d^{2}) = cb + cd^{2}
\]
### c. \( (b^{2}+d^{2}) \times c \)
Using the distributive property:
\[
(b^{2}+d^{2}) \times c = b^{2}c + d^{2}c
\]
### d. \( d \times (c+b^{2}) \)
Using the distributive property:
\[
d \times (c+b^{2}) = dc + db^{2}
\]
### e. \( (d^{2} \times b^{3}) + (d^{2} \times c^{3}) \)
This expression can be factored using the distributive property:
\[
d^{2} \times b^{3} + d^{2} \times c^{3} = d^{2}(b^{3} + c^{3})
\]
### Summary of Results
1. \( (b^{2}+c^{3}) d = b^{2}d + c^{3}d \)
2. \( c(b+d^{2}) = cb + cd^{2} \)
3. \( (b^{2}+d^{2}) \times c = b^{2}c + d^{2}c \)
4. \( d \times (c+b^{2}) = dc + db^{2} \)
5. \( (d^{2} \times b^{3}) + (d^{2} \times c^{3}) = d^{2}(b^{3} + c^{3}) \)
Each expression has been simplified using the distributive property, demonstrating that they are equal to their respective expanded forms.
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Mind Expander
To demonstrate the use of the distributive property for the given scenarios: a. \( \left(b^{2}+c^{3}\right) d = b^{2}d + c^{3}d \) b. \( c\left(b+d^{2}\right) = cb + cd^{2} \) c. \( \left(b^{2}+d^{2}\right) \times c = b^{2}c + d^{2}c \) d. \( d \times\left(c+b^{2}\right) = dc + db^{2} \) e. \( \left(d^{2} \times b^{3}\right)+\left(d^{2} \times c^{3}\right) = d^{2}(b^{3} + c^{3}) \) This property allows you to factor out a common term, making it easier to manipulate complex expressions!