Question
upstudy study bank question image url

Factor completely. \[ x^{3}+6 x^{2}+16 x+96 \]

Ask by Weaver Paul. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The expression \( x^{3}+6x^{2}+16x+96 \) factors to \( (x+6)(x^{2}+16) \).

Solution

Factor the expression \( x^{3}+6x^{2}+16x+96 \). Factor the expression by following steps: - step0: Factor: \(x^{3}+6x^{2}+16x+96\) - step1: Calculate: \(x^{3}+16x+6x^{2}+96\) - step2: Rewrite the expression: \(x\times x^{2}+x\times 16+6x^{2}+6\times 16\) - step3: Factor the expression: \(x\left(x^{2}+16\right)+6\left(x^{2}+16\right)\) - step4: Factor the expression: \(\left(x+6\right)\left(x^{2}+16\right)\) The factored form of the expression \(x^{3}+6x^{2}+16x+96\) is \((x+6)(x^{2}+16)\).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To factor the polynomial \( x^{3}+6 x^{2}+16 x+96 \) completely, we can start by using the Rational Root Theorem to test for possible rational roots. Testing \( x = -2 \): \[ (-2)^{3} + 6(-2)^{2} + 16(-2) + 96 = -8 + 24 - 32 + 96 = 80 \quad \text{(not a root)} \] Next, testing \( x = -4 \): \[ (-4)^{3} + 6(-4)^{2} + 16(-4) + 96 = -64 + 96 - 64 + 96 = 64 \quad \text{(not a root)} \] Testing \( x = -6 \): \[ (-6)^{3} + 6(-6)^{2} + 16(-6) + 96 = -216 + 216 - 96 + 96 = 0 \quad \text{(this is a root)} \] Now that we have found \( x = -6 \) is a root, we can perform synthetic division with \( x + 6 \): \[ \begin{array}{r|rrrr} -6 & 1 & 6 & 16 & 96 \\ & & -6 & 0 & -96 \\ \hline & 1 & 0 & 16 & 0 \\ \end{array} \] This gives us \( x^2 + 16 \) as the quotient. Therefore, we have: \[ x^{3}+6 x^{2}+16 x+96 = (x + 6)(x^2 + 16) \] The term \( x^2 + 16 \) cannot be factored further over the real numbers, but it can be expressed with complex numbers: \[ x^2 + 16 = (x + 4i)(x - 4i) \] Thus, the completely factored form of the polynomial \( x^{3}+6 x^{2}+16 x+96 \) is: \[ (x + 6)(x + 4i)(x - 4i) \]

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy