Answer
**Solutions:**
1. **Zeros of \( x^{2}-12 x+32 \):** \( x = 4 \) and \( x = 8 \)
2. **Zeros of \( -5 x^{2}-12 x+16 \):** \( x \approx -3.35 \) and \( x \approx 0.95 \)
3. **Zeros of \( x^{2}+12 x+11 \):** \( x = -1 \) and \( x = -11 \)
4. **Zeros of \( 7 x^{2}+14 x=0 \):** \( x = 0 \) and \( x = -2 \)
5. **Zeros of \( 6 x^{2}-7 x-14 \):** \( x \approx -1.05 \) and \( x \approx 2.22 \)
6. **Zeros of \( 9 x^{2}+4 x+2=3 x^{2}-6 x-9 \):** No real solution.
**Summary:**
- The first quadratic has zeros at \( x = 4 \) and \( x = 8 \).
- The second quadratic has zeros approximately at \( x = -3.35 \) and \( x = 0.95 \).
- The third quadratic has zeros at \( x = -1 \) and \( x = -11 \).
- The fourth quadratic has zeros at \( x = 0 \) and \( x = -2 \).
- The fifth quadratic has zeros approximately at \( x = -1.05 \) and \( x = 2.22 \).
- The sixth equation has no real solutions.
Solution
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(x^{2}+12x+11=0\)
- step1: Factor the expression:
\(\left(x+1\right)\left(x+11\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&x+1=0\\&x+11=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=-1\\&x=-11\end{align}\)
- step4: Rewrite:
\(x_{1}=-11,x_{2}=-1\)
Solve the equation \( x^{2}-12 x+32=0 \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(x^{2}-12x+32=0\)
- step1: Factor the expression:
\(\left(x-8\right)\left(x-4\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&x-8=0\\&x-4=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=8\\&x=4\end{align}\)
- step4: Rewrite:
\(x_{1}=4,x_{2}=8\)
Solve the equation \( 7 x^{2}+14 x=0 \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(7x^{2}+14x=0\)
- step1: Factor the expression:
\(7x\left(x+2\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&7x=0\\&x+2=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=0\\&x=-2\end{align}\)
- step4: Rewrite:
\(x_{1}=-2,x_{2}=0\)
Solve the equation \( 9 x^{2}+4 x+2-3 x^{2}+6 x+9=0 \).
Solve the equation(The complex numbers system) by following steps:
- step0: Solve using the quadratic formula in the complex numbers system:
\(9x^{2}+4x+2-3x^{2}+6x+9=0\)
- step1: Calculate:
\(6x^{2}+10x+11=0\)
- step2: Solve using the quadratic formula:
\(x=\frac{-10\pm \sqrt{10^{2}-4\times 6\times 11}}{2\times 6}\)
- step3: Simplify the expression:
\(x=\frac{-10\pm \sqrt{10^{2}-4\times 6\times 11}}{12}\)
- step4: Simplify the expression:
\(x=\frac{-10\pm \sqrt{-164}}{12}\)
- step5: Simplify the expression:
\(x=\frac{-10\pm 2\sqrt{41}\times i}{12}\)
- step6: Separate into possible cases:
\(\begin{align}&x=\frac{-10+2\sqrt{41}\times i}{12}\\&x=\frac{-10-2\sqrt{41}\times i}{12}\end{align}\)
- step7: Simplify the expression:
\(\begin{align}&x=-\frac{5}{6}+\frac{\sqrt{41}}{6}i\\&x=\frac{-10-2\sqrt{41}\times i}{12}\end{align}\)
- step8: Simplify the expression:
\(\begin{align}&x=-\frac{5}{6}+\frac{\sqrt{41}}{6}i\\&x=-\frac{5}{6}-\frac{\sqrt{41}}{6}i\end{align}\)
- step9: Rewrite:
\(x_{1}=-\frac{5}{6}-\frac{\sqrt{41}}{6}i,x_{2}=-\frac{5}{6}+\frac{\sqrt{41}}{6}i\)
- step10: Remove the complex number(s):
\(\textrm{No real solution}\)
Solve the equation \( 6 x^{2}-7 x-14=0 \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(6x^{2}-7x-14=0\)
- step1: Solve using the quadratic formula:
\(x=\frac{7\pm \sqrt{\left(-7\right)^{2}-4\times 6\left(-14\right)}}{2\times 6}\)
- step2: Simplify the expression:
\(x=\frac{7\pm \sqrt{\left(-7\right)^{2}-4\times 6\left(-14\right)}}{12}\)
- step3: Simplify the expression:
\(x=\frac{7\pm \sqrt{385}}{12}\)
- step4: Separate into possible cases:
\(\begin{align}&x=\frac{7+\sqrt{385}}{12}\\&x=\frac{7-\sqrt{385}}{12}\end{align}\)
- step5: Rewrite:
\(x_{1}=\frac{7-\sqrt{385}}{12},x_{2}=\frac{7+\sqrt{385}}{12}\)
Solve the equation \( -5 x^{2}-12 x+16=0 \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(-5x^{2}-12x+16=0\)
- step1: Multiply both sides:
\(5x^{2}+12x-16=0\)
- step2: Solve using the quadratic formula:
\(x=\frac{-12\pm \sqrt{12^{2}-4\times 5\left(-16\right)}}{2\times 5}\)
- step3: Simplify the expression:
\(x=\frac{-12\pm \sqrt{12^{2}-4\times 5\left(-16\right)}}{10}\)
- step4: Simplify the expression:
\(x=\frac{-12\pm \sqrt{464}}{10}\)
- step5: Simplify the expression:
\(x=\frac{-12\pm 4\sqrt{29}}{10}\)
- step6: Separate into possible cases:
\(\begin{align}&x=\frac{-12+4\sqrt{29}}{10}\\&x=\frac{-12-4\sqrt{29}}{10}\end{align}\)
- step7: Simplify the expression:
\(\begin{align}&x=\frac{-6+2\sqrt{29}}{5}\\&x=\frac{-12-4\sqrt{29}}{10}\end{align}\)
- step8: Simplify the expression:
\(\begin{align}&x=\frac{-6+2\sqrt{29}}{5}\\&x=-\frac{6+2\sqrt{29}}{5}\end{align}\)
- step9: Rewrite:
\(x_{1}=-\frac{6+2\sqrt{29}}{5},x_{2}=\frac{-6+2\sqrt{29}}{5}\)
Let's solve the problems step by step.
### 1. Find the zeros of \( x^{2}-12 x+32 \)
To find the zeros, we can use the quadratic formula:
\[
x = \frac{-b \pm \sqrt{D}}{2a}
\]
where \( D = b^2 - 4ac \).
For the equation \( x^{2}-12 x+32 = 0 \):
- \( a = 1 \)
- \( b = -12 \)
- \( c = 32 \)
Calculating \( D \):
\[
D = (-12)^2 - 4 \cdot 1 \cdot 32 = 144 - 128 = 16
\]
Now, applying the quadratic formula:
\[
x = \frac{12 \pm \sqrt{16}}{2 \cdot 1} = \frac{12 \pm 4}{2}
\]
This gives us:
\[
x_1 = \frac{16}{2} = 8, \quad x_2 = \frac{8}{2} = 4
\]
**Zeros:** \( x = 4 \) and \( x = 8 \)
### 2. Find the zeros of \( -5 x^{2}-12 x+16 \)
Using the quadratic formula again:
- \( a = -5 \)
- \( b = -12 \)
- \( c = 16 \)
Calculating \( D \):
\[
D = (-12)^2 - 4 \cdot (-5) \cdot 16 = 144 + 320 = 464
\]
Now, applying the quadratic formula:
\[
x = \frac{-(-12) \pm \sqrt{464}}{2 \cdot (-5)} = \frac{12 \pm \sqrt{464}}{-10}
\]
Calculating the approximate values:
\[
x_1 \approx -3.35, \quad x_2 \approx 0.95
\]
**Zeros:** \( x \approx -3.35 \) and \( x \approx 0.95 \)
### 3. Solve \( x^{2}+12 x=-11 \)
Rearranging gives:
\[
x^{2}+12 x + 11 = 0
\]
Using the quadratic formula:
- \( a = 1 \)
- \( b = 12 \)
- \( c = 11 \)
Calculating \( D \):
\[
D = 12^2 - 4 \cdot 1 \cdot 11 = 144 - 44 = 100
\]
Applying the quadratic formula:
\[
x = \frac{-12 \pm \sqrt{100}}{2 \cdot 1} = \frac{-12 \pm 10}{2}
\]
This gives us:
\[
x_1 = \frac{-2}{2} = -1, \quad x_2 = \frac{-22}{2} = -11
\]
**Zeros:** \( x = -1 \) and \( x = -11 \)
### 4. Solve \( 7 x^{2}+14 x=0 \)
Factoring out \( 7x \):
\[
7x(x + 2) = 0
\]
This gives:
\[
x_1 = 0, \quad x_2 = -2
\]
**Zeros:** \( x = 0 \) and \( x = -2 \)
### 5. Solve \( 6 x^{2}-7 x=14 \)
Rearranging gives:
\[
6 x^{2}-7 x - 14 = 0
\]
Using the quadratic formula:
- \( a = 6 \)
- \( b = -7 \)
- \( c = -14 \)
Calculating \( D \):
\[
D = (-7)^2 - 4 \cdot 6 \cdot (-14) = 49 + 336 = 385
\]
Applying the quadratic formula:
\[
x = \frac{7 \pm \sqrt{385}}{12}
\]
Calculating the approximate values:
\[
x_1 \approx -1.05, \quad x_2 \approx 2.22
\]
**Zeros:** \( x \approx -1.05 \) and \( x \approx 2.22 \)
### 6. Solve \( 9 x^{2}+4 x+2=3 x^{2}-6 x-9 \)
Rearranging gives:
\[
6 x^{2}+10 x+11 = 0
\]
Using the quadratic formula:
- \( a = 6 \)
- \( b = 10 \)
- \( c = 11 \)
Calculating \( D \):
\[
D = 10^2 - 4 \cdot 6 \cdot 11 = 100 - 264 = -164
\]
Since \( D < 0 \), there are no real solutions.
**Zeros:** No real solution.
### Summary of Results
1. Zeros of \( x^{2}-12 x+32 \): \( x = 4, 8 \)
2. Zeros of \( -5 x^{2}-12 x+16 \): \( x \approx -3.35, 0.95 \)
3. Zeros of \( x^{2}+12 x+11 \): \( x = -1, -11 \)
4. Zeros of \( 7 x^{2}+14 x=0 \): \( x = 0, -2 \)
5. Zeros of \( 6 x^{2}-7 x-14 \): \( x \approx -1.05, 2.22 \)
6. Zeros of \( 9 x^{2}+4 x+2=3 x^{2}-6 x-9 \): No real solution.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution