Question
upstudy study bank question image url

\[ \begin{array}{l} \frac{x^{6}}{x^{4}}=x^{2} \quad \frac{20 x}{x^{4}}=\frac{7-1 x^{5}}{x^{4}}=x^{1} \quad \frac{-1 x^{4}}{x^{4}}=x \quad \frac{-1 x^{-3}}{x^{4}}=-x \\ x^{6}+6 x^{3}-2 x^{5}-7 x^{2}-4 x+6 \text { entre } x^{4}-3 x^{2}+2 \\ \begin{array}{rccc} x^{6} & -2 x^{5} & 0 \\ -x^{6} & +3 x^{5} & -2 x^{4} \\ -x^{5} & +6 x^{3} & -7 x^{2} \quad-4 x+6 \frac{x^{4}-3 x^{2}}{x^{2} 1 x} \\ 20 x^{3} \end{array} \end{array} \]

Ask by Love Bird. in Ecuador
Jan 14,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El cociente de la división es \( x^{2} - 2x + 3 \) y el residuo es 0.

Solution

Claro, vamos a realizar la división del polinomio \( x^{6} + 6x^{3} - 2x^{5} - 7x^{2} - 4x + 6 \) entre el polinomio \( x^{4} - 3x^{2} + 2 \) utilizando el método de la división polinómica. ### Paso 1: Ordenar los términos Primero, ordenamos los términos de ambos polinomios en orden descendente de los exponentes: - **Dividendo:** \( x^{6} - 2x^{5} + 6x^{3} - 7x^{2} - 4x + 6 \) - **Divisor:** \( x^{4} - 3x^{2} + 2 \) ### Paso 2: División del primer término Dividimos el término de mayor grado del dividendo por el término de mayor grado del divisor: \[ \frac{x^{6}}{x^{4}} = x^{2} \] Este es el primer término del cociente. ### Paso 3: Multiplicación y resta Multiplicamos el divisor por \( x^{2} \) y restamos el resultado del dividendo: \[ x^{2} \cdot (x^{4} - 3x^{2} + 2) = x^{6} - 3x^{4} + 2x^{2} \] \[ \begin{align*} & \underline{x^{6} - 2x^{5} + 6x^{3} - 7x^{2} - 4x + 6} \\ - & (x^{6} - 3x^{4} + 2x^{2}) \\ = & \quad 0x^{6} - 2x^{5} + 3x^{4} + 6x^{3} - 9x^{2} - 4x + 6 \end{align*} \] ### Paso 4: Repetir el proceso Ahora, repetimos el proceso con el nuevo polinomio resultante. 1. **División:** \[ \frac{-2x^{5}}{x^{4}} = -2x \] 2. **Multiplicación:** \[ -2x \cdot (x^{4} - 3x^{2} + 2) = -2x^{5} + 6x^{3} - 4x \] 3. **Resta:** \[ \begin{align*} & \underline{-2x^{5} + 3x^{4} + 6x^{3} - 9x^{2} - 4x + 6} \\ - & (-2x^{5} + 6x^{3} - 4x) \\ = & \quad 0x^{5} + 3x^{4} + 0x^{3} - 9x^{2} + 0x + 6 \end{align*} \] ### Paso 5: Última iteración Repetimos una vez más con el nuevo polinomio. 1. **División:** \[ \frac{3x^{4}}{x^{4}} = 3 \] 2. **Multiplicación:** \[ 3 \cdot (x^{4} - 3x^{2} + 2) = 3x^{4} - 9x^{2} + 6 \] 3. **Resta:** \[ \begin{align*} & \underline{3x^{4} - 9x^{2} + 6} \\ - & (3x^{4} - 9x^{2} + 6) \\ = & \quad 0x^{4} + 0x^{2} + 0 \end{align*} \] ### Resultado Final El cociente de la división es: \[ x^{2} - 2x + 3 \] Y el residuo es \( 0 \), lo que indica que el dividendo es divisible exactamente por el divisor. ### Conclusión Por lo tanto: \[ \frac{x^{6} - 2x^{5} + 6x^{3} - 7x^{2} - 4x + 6}{x^{4} - 3x^{2} + 2} = x^{2} - 2x + 3 \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Did you know that the process of simplifying rational expressions like this one has roots in ancient mathematics? The Egyptians and Babylonians were already utilizing algebraic concepts over 4,000 years ago! They used their own methods for calculations that resemble the principles of simplifying fractions and solving equations we use today. In real-world applications, algebra plays a crucial role in fields like engineering and economics where we often deal with polynomials and rational expressions. For instance, engineers use polynomial functions to model and predict the behavior of structures under various loads, ensuring safety and efficiency in design. Understanding how to manipulate these expressions allows for the development of reliable and cost-effective solutions!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy