Question
upstudy study bank question image url

3. An irregular lump of an unknown metal has a measured density of \( 2.97 \mathrm{~g} / \mathrm{mL} \). The metal is heated to a temperature of \( 173^{\circ} \mathrm{C} \) and placed in a graduated cylinder filled with 25.0 mL of water at \( 25.0^{\circ} \mathrm{C} \). After the system has reached thermal equilibrium, the volume in the cylinder is read at 34.0 mL , and the temperature is recorded as \( 40.6^{\circ} \mathrm{C} \). What is the specific heat of the unknown metal sample? Assume no heat is lost to the surroundings. What is the metal used in the experiment? Specific heat of water \( =4.184 \mathrm{~J} / \mathrm{g} \mathrm{C} \) Specific heat of granite \( =0.79 \mathrm{~J} / \mathrm{g} \mathrm{C} \) Specific heat of copper \( =0.38 \mathrm{~J} / \mathrm{g} \mathrm{C} \) Specific heat of iron \( =0.45 \mathrm{~J} / \mathrm{g} \mathrm{C} \) Specific heat of lead \( =0.13 \mathrm{~J} / \mathrm{g} \mathrm{C} \)

Ask by Henry Lee. in the Philippines
Mar 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The metal's specific heat is approximately \( 0.46~\mathrm{J/(g\,^{\circ}C)} \), and it is identified as iron.

Solution

1. **Determine the mass of the metal sample** The metal displaces water, and the displaced volume is \[ V_{\text{metal}} = 34.0~\mathrm{mL} - 25.0~\mathrm{mL} = 9.0~\mathrm{mL}. \] Given the density of the metal is \( \rho = 2.97~\mathrm{g/mL} \), the mass is \[ m_{\text{metal}} = \rho \cdot V_{\text{metal}} = 2.97~\mathrm{g/mL} \times 9.0~\mathrm{mL} = 26.73~\mathrm{g}. \] 2. **Apply conservation of energy** The heat lost by the metal equals the heat gained by the water (no heat loss to the surroundings). Let \( c_m \) be the specific heat of the metal. - The metal cools from \( 173.0^{\circ} \mathrm{C} \) to \( 40.6^{\circ} \mathrm{C} \) (a drop of) \[ \Delta T_{\text{metal}} = 173.0^{\circ} \mathrm{C} - 40.6^{\circ} \mathrm{C} = 132.4^{\circ} \mathrm{C}. \] - The water heats from \( 25.0^{\circ} \mathrm{C} \) to \( 40.6^{\circ} \mathrm{C} \) (an increase of) \[ \Delta T_{\text{water}} = 40.6^{\circ} \mathrm{C} - 25.0^{\circ} \mathrm{C} = 15.6^{\circ} \mathrm{C}. \] - The mass of water is \[ m_{\text{water}} = 25.0~\mathrm{g} \quad \text{(since the density of water is \(1.00~\mathrm{g/mL}\))}. \] - The specific heat of water is given as \[ c_{\text{water}} = 4.184~\mathrm{J/(g\,^{\circ}C)}. \] Therefore, the energy conservation equation is \[ m_{\text{metal}} \, c_m \, \Delta T_{\text{metal}} = m_{\text{water}} \, c_{\text{water}} \, \Delta T_{\text{water}}. \] 3. **Solve for the specific heat \( c_m \)** Substituting the known values, we have: \[ 26.73~\mathrm{g} \, c_m \, (132.4^{\circ} \mathrm{C}) = 25.0~\mathrm{g} \, (4.184~\mathrm{J/(g\,^{\circ}C)}) \, (15.6^{\circ} \mathrm{C}). \] Rearranging for \( c_m \): \[ c_m = \frac{25.0 \times 4.184 \times 15.6}{26.73 \times 132.4}. \] 4. **Compute the numerical value** - Calculate the numerator: \[ 25.0 \times 4.184 = 104.6, \] \[ 104.6 \times 15.6 \approx 1632~\mathrm{J}. \] - Calculate the denominator: \[ 26.73 \times 132.4 \approx 3539. \] Thus, \[ c_m \approx \frac{1632}{3539} \approx 0.461~\mathrm{J/(g\,^{\circ}C)}. \] 5. **Identify the metal** Comparing the obtained \( c_m \) with the provided specific heat capacities: - Granite: \( 0.79~\mathrm{J/(g\,^{\circ}C)} \) - Copper: \( 0.38~\mathrm{J/(g\,^{\circ}C)} \) - Iron: \( 0.45~\mathrm{J/(g\,^{\circ}C)} \) - Lead: \( 0.13~\mathrm{J/(g\,^{\circ}C)} \) \( c_m \approx 0.461~\mathrm{J/(g\,^{\circ}C)} \) is closest to the specific heat of iron, which is \( 0.45~\mathrm{J/(g\,^{\circ}C)} \). 6. **Final Answer** The specific heat of the unknown metal is approximately \( 0.46~\mathrm{J/(g\,^{\circ}C)} \) and the metal used in the experiment is iron.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To find the specific heat of the unknown metal, we need to use the principle of conservation of energy. The heat lost by the metal will be equal to the heat gained by the water. First, calculate the mass of water: - Mass of water (m_water) = Volume × Density = 25.0 mL × 1 g/mL = 25.0 g. - Change in temperature of water (ΔT_water) = Final temperature - Initial temperature = 40.6 °C - 25.0 °C = 15.6 °C. Now, the heat gained by the water can be calculated as: \[ Q_{water} = m_{water} × c_{water} × \Delta T_{water} = 25.0 \, g × 4.184 \, \frac{J}{g \, °C} × 15.6 \, °C \] \[ Q_{water} = 1623 J \] Assuming no heat is lost to the surroundings, this is equal to the heat lost by the metal: \[ Q_{metal} = -Q_{water} \] Let the mass of the metal (m_metal) be determined from its density: - Volume of the metal = Final volume - Initial volume of water = 34.0 mL - 25.0 mL = 9.0 mL. - Mass of metal (m_metal) = Density × Volume = 2.97 g/mL × 9.0 mL = 26.73 g. The change in temperature of the metal (ΔT_metal) is: - ΔT_metal = Initial temperature of metal - Final temperature = 173 °C - 40.6 °C = 132.4 °C. Now we use the heat lost by the metal: \[ Q_{metal} = m_{metal} × c_{metal} × ΔT_{metal} = -1623 J \] \[ 26.73 g × c_{metal} × 132.4 °C = -1623 J \] Finally, we can solve for the specific heat of the metal: \[ c_{metal} = \frac{-1623 J}{26.73 g × 132.4 °C} \approx 0.45 \, \frac{J}{g \, °C} \] Given this specific heat, the metal could be iron, as it matches closely with the known specific heats provided. Did you know that the specific heat of a substance tells us how much heat it can absorb per unit mass? It's like a measure of how well a material can hang onto its heat—think of it as its "thermal personality!" The higher the specific heat, the less temperature change you'll see with the addition of heat. If you're diving into the world of specific heats, consider looking into thermal conductivity too! It's related, as it measures how well a substance conducts heat. You could explore materials used in cooking, like stainless steel versus cast iron, and see how their heat properties influence cooking performance. Hot stuff, literally!

Related Questions

T0 Los aniones se generan por: a. ganancia de protones c. pérdida de electroners b. ganancia de electrones. d. pécida de protones (12) El radio atómico de los elementos \( \mathrm{Na}, \mathrm{F} \) y Mg aumenta en el orden: a. \( \mathrm{Na}, \mathrm{E}, \mathrm{Mg} \). c. \( \mathrm{F}, \mathrm{Mg}, \mathrm{Na} \). b. \( \mathrm{F}, \mathrm{Na}, \mathrm{Mg} \). d. \( \mathrm{Mg}, \mathrm{Na}, \mathrm{F} \) (13) El arsénico pertenece al periodo 4 , grupo 15 , y el flúor, al periodo 2 , grupo 17. Es correcto decir que: a. el arsénico posee menor carácter metálico. c. el fluor tiene mayor radio atómico. b. el arsénico posee mayor energia de ionización. d. el flúor posee mayor afinidad electrónica. (14) Los electrones más cercanos al núcleo provocan que los periféricos sean atraidos con menor fuerza hacia el núcleo. Este fenómeno se llama: a. efecto de apantallamiento. c. carga eléctrica. b. carga nuclear. d. fuerza magnética. (15) Propiedad periódica que indica la fuerza con la que el átomo de una molécula atrae hacia sí los electrones compartidos. Se refiere a: a. energía de ionización. c. afinidad electrónica. b. electronegatividad. d. radio atómico. 16 ¿Cómo se denomina el conjunto de elementos que presentan similar configuración electrónic y distinto nivel de energía? a. periodo c. orbital b. grupo d. número atómico 17 En un periodo la energía de ionización: a. aumenta de izquierda a derecha. c. aumenta de abajo hacia arriba. 3. disminuye de izquierda a derecha. d. disminuye de abajo hacia arriba.
Chemistry Ecuador Mar 10, 2025

Latest Chemistry Questions

T0 Los aniones se generan por: a. ganancia de protones c. pérdida de electroners b. ganancia de electrones. d. pécida de protones (12) El radio atómico de los elementos \( \mathrm{Na}, \mathrm{F} \) y Mg aumenta en el orden: a. \( \mathrm{Na}, \mathrm{E}, \mathrm{Mg} \). c. \( \mathrm{F}, \mathrm{Mg}, \mathrm{Na} \). b. \( \mathrm{F}, \mathrm{Na}, \mathrm{Mg} \). d. \( \mathrm{Mg}, \mathrm{Na}, \mathrm{F} \) (13) El arsénico pertenece al periodo 4 , grupo 15 , y el flúor, al periodo 2 , grupo 17. Es correcto decir que: a. el arsénico posee menor carácter metálico. c. el fluor tiene mayor radio atómico. b. el arsénico posee mayor energia de ionización. d. el flúor posee mayor afinidad electrónica. (14) Los electrones más cercanos al núcleo provocan que los periféricos sean atraidos con menor fuerza hacia el núcleo. Este fenómeno se llama: a. efecto de apantallamiento. c. carga eléctrica. b. carga nuclear. d. fuerza magnética. (15) Propiedad periódica que indica la fuerza con la que el átomo de una molécula atrae hacia sí los electrones compartidos. Se refiere a: a. energía de ionización. c. afinidad electrónica. b. electronegatividad. d. radio atómico. 16 ¿Cómo se denomina el conjunto de elementos que presentan similar configuración electrónic y distinto nivel de energía? a. periodo c. orbital b. grupo d. número atómico 17 En un periodo la energía de ionización: a. aumenta de izquierda a derecha. c. aumenta de abajo hacia arriba. 3. disminuye de izquierda a derecha. d. disminuye de abajo hacia arriba.
Chemistry Ecuador Mar 10, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy