Question
upstudy study bank question image url

\( \frac { 1 - 2 \sin ^ { 2 } ( \pi + \alpha ) } { \sin ( \frac { \pi } { 2 } + \alpha ) + \sin ( \pi - \alpha ) } + \frac { 1 - 2 \cos ^ { 2 } ( \pi - \alpha ) } { \cos ( \pi + \alpha ) + \cos ( \frac { \pi } { 2 } - \alpha ) } \)

Ask by Haynes Carter. in Belarus
Dec 03,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

Упростить данное выражение можно, используя тригонометрические идентичности. В общем случае, результат будет зависеть от значений \(\alpha\).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Beyond the Answer

To simplify the expression \[ \frac { 1 - 2 \sin ^ { 2 } ( \pi + \alpha ) } { \sin ( \frac { \pi } { 2 } + \alpha ) + \sin ( \pi - \alpha ) } + \frac { 1 - 2 \cos ^ { 2 } ( \pi - \alpha ) } { \cos ( \pi + \alpha ) + \cos ( \frac { \pi } { 2 } - \alpha ) }, \] let's start with the individual parts. ### First Fraction 1. **Simplifying the numerator**: - We know that \(\sin(\pi + \alpha) = -\sin(\alpha)\). Thus, \[ \sin^2(\pi + \alpha) = \sin^2(\alpha). \] Hence, the numerator becomes: \[ 1 - 2\sin^2(\pi + \alpha) = 1 - 2\sin^2(\alpha). \] 2. **Simplifying the denominator**: - \(\sin\left(\frac{\pi}{2} + \alpha\right) = \cos(\alpha)\) and \(\sin(\pi - \alpha) = \sin(\alpha)\), allowing us to write: \[ \sin\left(\frac{\pi}{2} + \alpha\right) + \sin(\pi - \alpha) = \cos(\alpha) + \sin(\alpha). \] Thus, the first fraction simplifies to: \[ \frac{1 - 2\sin^2(\alpha)}{\cos(\alpha) + \sin(\alpha)}. \] ### Second Fraction 1. **Simplifying the numerator**: - \(\cos(\pi - \alpha) = -\cos(\alpha)\), so \[ \cos^2(\pi - \alpha) = \cos^2(\alpha). \] Therefore, we have: \[ 1 - 2\cos^2(\pi - \alpha) = 1 - 2\cos^2(\alpha). \] 2. **Simplifying the denominator**: - \(\cos(\pi + \alpha) = -\cos(\alpha)\) and \(\cos\left(\frac{\pi}{2} - \alpha\right) = \sin(\alpha)\). This gives us: \[ \cos(\pi + \alpha) + \cos\left(\frac{\pi}{2} - \alpha\right) = -\cos(\alpha) + \sin(\alpha). \] Thus, the second fraction simplifies to: \[ \frac{1 - 2\cos^2(\alpha)}{-\cos(\alpha) + \sin(\alpha)}. \] ### Final Expression Now we combine the simplified fractions: \[ \frac{1 - 2\sin^2(\alpha)}{\cos(\alpha) + \sin(\alpha)} + \frac{1 - 2\cos^2(\alpha)}{-\cos(\alpha) + \sin(\alpha)}. \] Combine these over a common denominator: \[ \frac{(1 - 2\sin^2(\alpha))(-\cos(\alpha) + \sin(\alpha)) + (1 - 2\cos^2(\alpha))(\cos(\alpha) + \sin(\alpha))}{(\cos(\alpha) + \sin(\alpha))(-\cos(\alpha) + \sin(\alpha))}. \] Expanding the numerators: 1. The first part: \[ (1 - 2\sin^2(\alpha))(-\cos(\alpha) + \sin(\alpha)) = -\cos(\alpha) + \sin(\alpha) + 2\sin^2(\alpha)\cos(\alpha) - 2\sin^3(\alpha). \] 2. The second part: \[ (1 - 2\cos^2(\alpha))(\cos(\alpha) + \sin(\alpha)) = \cos(\alpha) + \sin(\alpha) - 2\cos^3(\alpha) - 2\cos^2(\alpha)\sin(\alpha). \] Combine and simplify further: \[ \text{Numerator} = (-\cos(\alpha) + \sin(\alpha)) + (1 - 2\cos^2(\alpha))\cdots \] will depend on values of \( \alpha \), but we can recognize that the expression may further simplify through Pythagorean identities. The full simplification may yield results depending on

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy