Question
upstudy study bank question image url

Find the exact value of \( \tan 75^{\circ} \).

Ask by Craig Bates. in Puerto Rico
Dec 03,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

The exact value of \( \tan 75^{\circ} \) is \( 2 + \sqrt{3} \).

Solution

To find the exact value of \( \tan 75^{\circ} \), we can use the trigonometric identity \( \tan(45^{\circ} + 30^{\circ}) = \frac{\tan 45^{\circ} + \tan 30^{\circ}}{1 - \tan 45^{\circ} \cdot \tan 30^{\circ}} \). Given that \( \tan 45^{\circ} = 1 \) and \( \tan 30^{\circ} = \frac{1}{\sqrt{3}} \), we can substitute these values into the formula: \( \tan 75^{\circ} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}} \) Simplifying this expression will give us the exact value of \( \tan 75^{\circ} \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(1+\frac{1}{\sqrt{3}}\right)}{\left(1-\frac{1\times 1}{\sqrt{3}}\right)}\) - step1: Remove the parentheses: \(\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1\times 1}{\sqrt{3}}}\) - step2: Calculate: \(\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}}\) - step3: Add the numbers: \(\frac{\frac{3+\sqrt{3}}{3}}{1-\frac{1}{\sqrt{3}}}\) - step4: Subtract the numbers: \(\frac{\frac{3+\sqrt{3}}{3}}{\frac{3-\sqrt{3}}{3}}\) - step5: Multiply by the reciprocal: \(\frac{3+\sqrt{3}}{3}\times \frac{3}{3-\sqrt{3}}\) - step6: Reduce the numbers: \(\left(3+\sqrt{3}\right)\times \frac{1}{3-\sqrt{3}}\) - step7: Multiply: \(\frac{3+\sqrt{3}}{3-\sqrt{3}}\) - step8: Multiply by the Conjugate: \(\frac{\left(3+\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}\) - step9: Multiply the numbers: \(\frac{\left(3+\sqrt{3}\right)\left(3+\sqrt{3}\right)}{6}\) - step10: Multiply the numbers: \(\frac{12+6\sqrt{3}}{6}\) - step11: Rewrite the expression: \(\frac{6\left(2+\sqrt{3}\right)}{6}\) - step12: Reduce the fraction: \(2+\sqrt{3}\) The exact value of \( \tan 75^{\circ} \) is \( 2 + \sqrt{3} \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To find the exact value of \( \tan 75^{\circ} \), we can use the angle addition formula for tangent. We know that \( 75^{\circ} = 45^{\circ} + 30^{\circ} \). The tangent addition formula is given by: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] Setting \( a = 45^{\circ} \) and \( b = 30^{\circ} \): \[ \tan 45^{\circ} = 1 \quad \text{and} \quad \tan 30^{\circ} = \frac{1}{\sqrt{3}} \] Plugging these values into the formula: \[ \tan 75^{\circ} = \frac{\tan 45^{\circ} + \tan 30^{\circ}}{1 - \tan 45^{\circ} \tan 30^{\circ}} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}} \] Now, simplifying the expression step by step: The numerator becomes: \[ 1 + \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{\sqrt{3} + 1}{\sqrt{3}} \] The denominator becomes: \[ 1 - \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3}} - \frac{1}{\sqrt{3}} = \frac{\sqrt{3} - 1}{\sqrt{3}} \] Putting it all together: \[ \tan 75^{\circ} = \frac{\frac{\sqrt{3} + 1}{\sqrt{3}}}{\frac{\sqrt{3} - 1}{\sqrt{3}}} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \] To simplify further, we can multiply the numerator and denominator by \( \sqrt{3} + 1 \): \[ \tan 75^{\circ} = \frac{(\sqrt{3} + 1)(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{(\sqrt{3} + 1)^2}{(\sqrt{3})^2 - (1)^2} \] Calculating each of these: The denominator becomes: \[ (\sqrt{3})^2 - (1)^2 = 3 - 1 = 2 \] The numerator becomes: \[ (\sqrt{3} + 1)^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3} \] Thus, we have: \[ \tan 75^{\circ} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3} \] Therefore, the exact value of \( \tan 75^{\circ} \) is: \[ \boxed{2 + \sqrt{3}} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy