\( \operatorname { os } ( \arcsin ( \frac { 12 } { 13 } ) + \arccos ( \frac { 5 } { 13 } ) ) \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To evaluate \( \operatorname { os } ( \arcsin ( \frac { 12 } { 13 } ) + \arccos ( \frac { 5 } { 13 } ) ) \), we can use the sine and cosine relationships. First, let \( x = \arcsin \left( \frac{12}{13} \right) \) and \( y = \arccos \left( \frac{5}{13} \right) \). By definition, we have: \[ \sin(x) = \frac{12}{13} \] \[ \cos(y) = \frac{5}{13} \] Now, knowing that \( x + y = \frac{\pi}{2} \) (as \( \arcsin(a) + \arccos(a) = \frac{\pi}{2} \) for any \( a \)), we can rewrite \( \operatorname{os}(x + y) \) as follows: \[ \operatorname{os}(x + y) = \operatorname{os} \left( \frac{\pi}{2} \right) \] Since \( \operatorname{os}(\frac{\pi}{2}) = 0 \), we conclude: \[ \operatorname{os} \left( \arcsin \left( \frac { 12 } { 13 } \right) + \arccos \left( \frac { 5 } { 13 } \right) \right) = 0 \] Therefore, the final answer is: \[ \boxed{0} \]