Question
upstudy study bank question image url

\( \operatorname { os } ( \arcsin ( \frac { 12 } { 13 } ) + \arccos ( \frac { 5 } { 13 } ) ) \)

Ask by May Hodges. in Russia
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Natijada, berilgan ifodaning qiymati 0 ga teng.

Solution

Berilgan ifoda: \[ \operatorname{os} \left( \arcsin \left( \frac{12}{13} \right) + \arccos \left( \frac{5}{13} \right) \right) \] Bu ifodani yechish uchun avval \(\arcsin\) va \(\arccos\) funksiyalarining qiymatlarini aniqlaymiz. 1. \(\arcsin\) funksiyasi \(\frac{12}{13}\) qiymatini beradi, bu \( \theta_1 \) burchagini anglatadi, ya'ni: \[ \sin(\theta_1) = \frac{12}{13} \] 2. \(\arccos\) funksiyasi \(\frac{5}{13}\) qiymatini beradi, bu \( \theta_2 \) burchagini anglatadi, ya'ni: \[ \cos(\theta_2) = \frac{5}{13} \] 3. Endi, \(\theta_1\) va \(\theta_2\) burchaklari orasidagi bog'lanishni ko'rib chiqamiz. Pifagor teoremasiga ko'ra: \[ \sin^2(\theta) + \cos^2(\theta) = 1 \] \(\theta_1\) uchun: \[ \cos(\theta_1) = \sqrt{1 - \sin^2(\theta_1)} = \sqrt{1 - \left(\frac{12}{13}\right)^2} = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13} \] Bu shuni anglatadiki, \(\theta_1\) va \(\theta_2\) burchaklari bir xil, ya'ni: \[ \theta_1 + \theta_2 = \frac{\pi}{2} \] 4. Shunday qilib, ifodamizni quyidagicha yozishimiz mumkin: \[ \operatorname{os} \left( \frac{\pi}{2} \right) \] 5. Natijada: \[ \operatorname{os} \left( \frac{\pi}{2} \right) = 0 \] Shunday qilib, berilgan ifodaning natijasi: \[ \boxed{0} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To evaluate \( \operatorname { os } ( \arcsin ( \frac { 12 } { 13 } ) + \arccos ( \frac { 5 } { 13 } ) ) \), we can use the sine and cosine relationships. First, let \( x = \arcsin \left( \frac{12}{13} \right) \) and \( y = \arccos \left( \frac{5}{13} \right) \). By definition, we have: \[ \sin(x) = \frac{12}{13} \] \[ \cos(y) = \frac{5}{13} \] Now, knowing that \( x + y = \frac{\pi}{2} \) (as \( \arcsin(a) + \arccos(a) = \frac{\pi}{2} \) for any \( a \)), we can rewrite \( \operatorname{os}(x + y) \) as follows: \[ \operatorname{os}(x + y) = \operatorname{os} \left( \frac{\pi}{2} \right) \] Since \( \operatorname{os}(\frac{\pi}{2}) = 0 \), we conclude: \[ \operatorname{os} \left( \arcsin \left( \frac { 12 } { 13 } \right) + \arccos \left( \frac { 5 } { 13 } \right) \right) = 0 \] Therefore, the final answer is: \[ \boxed{0} \]

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy