Question
upstudy study bank question image url

Q2 If \( \cos \theta=\frac{-4}{5} \) and \( 0^{\circ}<\theta<270 \) Determine \( 2.1 \sin \theta+\cos \theta \) \( 22.3 \tan \theta+\sin \theta \) \( 2.3 \frac{\sin \theta}{\cos \theta} \)

Ask by Gibbs Weaver. in South Africa
Feb 17,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( 2.1 \sin \theta + \cos \theta = 0.46 \) \( 22.3 \tan \theta + \sin \theta = -16.125 \) \( 2.3 \frac{\sin \theta}{\cos \theta} = -1.725 \)

Solution

To solve the problem, we start with the known condition \( \cos \theta = \frac{-4}{5} \) and the range \( 0^{\circ} < \theta < 270^{\circ} \). This range indicates that \( \theta \) is in the second or third quadrant, where sine and cosine have specific signs. ### Step 1: Determine \( \sin \theta \) Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] we can substitute the value of \( \cos \theta \): \[ \sin^2 \theta + \left(\frac{-4}{5}\right)^2 = 1 \] Calculating \( \left(\frac{-4}{5}\right)^2 \): \[ \sin^2 \theta + \frac{16}{25} = 1 \] Subtracting \( \frac{16}{25} \) from both sides: \[ \sin^2 \theta = 1 - \frac{16}{25} = \frac{25}{25} - \frac{16}{25} = \frac{9}{25} \] Taking the square root: \[ \sin \theta = \pm \sqrt{\frac{9}{25}} = \pm \frac{3}{5} \] Since \( \theta \) is in the second quadrant, where sine is positive: \[ \sin \theta = \frac{3}{5} \] ### Step 2: Calculate \( 2.1 \sin \theta + \cos \theta \) Now we can calculate \( 2.1 \sin \theta + \cos \theta \): \[ 2.1 \sin \theta + \cos \theta = 2.1 \left(\frac{3}{5}\right) + \left(\frac{-4}{5}\right) \] Calculating \( 2.1 \left(\frac{3}{5}\right) \): \[ 2.1 \cdot \frac{3}{5} = \frac{6.3}{5} \] Now substituting back: \[ \frac{6.3}{5} - \frac{4}{5} = \frac{6.3 - 4}{5} = \frac{2.3}{5} \] ### Step 3: Calculate \( 22.3 \tan \theta + \sin \theta \) Next, we need to find \( \tan \theta \): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{3}{5}}{\frac{-4}{5}} = \frac{3}{-4} = -\frac{3}{4} \] Now we can calculate \( 22.3 \tan \theta + \sin \theta \): \[ 22.3 \tan \theta + \sin \theta = 22.3 \left(-\frac{3}{4}\right) + \frac{3}{5} \] Calculating \( 22.3 \left(-\frac{3}{4}\right) \): \[ 22.3 \cdot -\frac{3}{4} = -\frac{66.9}{4} = -16.725 \] Now substituting back: \[ -16.725 + \frac{3}{5} = -16.725 + 0.6 = -16.125 \] ### Step 4: Calculate \( 2.3 \frac{\sin \theta}{\cos \theta} \) Finally, we calculate \( 2.3 \frac{\sin \theta}{\cos \theta} \): \[ 2.3 \frac{\sin \theta}{\cos \theta} = 2.3 \tan \theta = 2.3 \left(-\frac{3}{4}\right) \] Calculating: \[ 2.3 \cdot -\frac{3}{4} = -\frac{6.9}{4} = -1.725 \] ### Summary of Results 1. \( 2.1 \sin \theta + \cos \theta = \frac{2.3}{5} \) 2. \( 22.3 \tan \theta + \sin \theta = -16.125 \) 3. \( 2.3 \frac{\sin \theta}{\cos \theta} = -1.725 \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve for \( \sin \theta \) given \( \cos \theta = -\frac{4}{5} \) and \( 0^{\circ} < \theta < 270^{\circ} \), we first identify the quadrant. Since \( \cos \theta \) is negative and \( \theta \) is less than \( 270^{\circ} \), this means \(\theta\) lies in the second or third quadrant. Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): 1. We find \( \sin^2 \theta \): \[ \sin^2 \theta = 1 - \cos^2 \theta = 1 - \left(-\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25} \] Thus, \( \sin \theta = \pm\sqrt{\frac{9}{25}} = \pm\frac{3}{5} \). 2. In the second quadrant, \( \sin \theta\) is positive: \(\sin \theta = \frac{3}{5}\). Now, we can evaluate the requested expressions: **For \(2.1 \sin \theta + \cos \theta\)**: \[ 2.1 \sin \theta + \cos \theta = 2.1\left(\frac{3}{5}\right) + \left(-\frac{4}{5}\right) = \frac{6.3}{5} - \frac{4}{5} = \frac{2.3}{5}. \] **For \(22.3 \tan \theta + \sin \theta\)**, we find \( \tan \theta\): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{3}{5}}{-\frac{4}{5}} = -\frac{3}{4}. \] Then, \[ 22.3 \tan \theta + \sin \theta = 22.3\left(-\frac{3}{4}\right) + \frac{3}{5} = -16.725 + 0.6 = -16.125. \] **For \(2.3 \frac{\sin \theta}{\cos \theta}\)**: \[ 2.3 \frac{\sin \theta}{\cos \theta} = 2.3 \tan \theta = 2.3\left(-\frac{3}{4}\right) = -1.725. \] So, our final results are: - \( 2.1 \sin \theta + \cos \theta = \frac{2.3}{5} \) - \( 22.3 \tan \theta + \sin \theta = -16.125 \) - \( 2.3 \frac{\sin \theta}{\cos \theta} = -1.725 \)

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy