Question
upstudy study bank question image url

Solve logarithmic equation \( \rightarrow \log _{3}\left(b^{2}+15\right)=2 \)

Ask by Jimenez Long. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

There is no real solution for \( b \).

Solution

Solve the equation \( \log_{3}(b^{2}+15)=2 \). Solve the equation by following steps: - step0: Solve for \(b\): \(\log_{3}{\left(b^{2}+15\right)}=2\) - step1: Convert the logarithm into exponential form: \(b^{2}+15=3^{2}\) - step2: Evaluate the power: \(b^{2}+15=9\) - step3: Move the constant to the right side: \(b^{2}=9-15\) - step4: Subtract the numbers: \(b^{2}=-6\) - step5: The statement is false for any value of \(b:\) \(b \notin \mathbb{R}\) The solution to the logarithmic equation \( \log_{3}(b^{2}+15)=2 \) is that there is no real solution for \( b \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To solve the equation \( \log_{3}(b^{2}+15) = 2 \), we can eliminate the logarithm by rewriting the equation in exponential form. This means we convert the logarithmic equation into its equivalent exponential form: \[ b^{2} + 15 = 3^{2} \] Calculating \( 3^{2} \) gives us 9: \[ b^{2} + 15 = 9 \] Now, we can solve for \( b^{2} \) by isolating it: \[ b^{2} = 9 - 15 \] This simplifies to: \[ b^{2} = -6 \] Since the square of a real number cannot be negative, we conclude that there are no real solutions for \( b \). Therefore, the equation \( \log_{3}(b^{2}+15) = 2 \) has no solution in the real number set. If you were looking for complex solutions, then we can state: \[ b = \pm i\sqrt{6} \] So to sum up, the solution is \( b = i\sqrt{6} \) and \( b = -i\sqrt{6} \).

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy