Question
upstudy study bank question image url

7 Si sabemos que \( \cos \frac{\alpha}{2}=-\frac{1}{3} \) y que \( 180^{\circ}<\alpha<270^{\circ} \) halla \( \cos 2 \alpha \) sin hallar el ángulo \( \alpha \).

Ask by Lee Christensen. in Spain
Dec 03,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

Para hallar \( \cos 2\alpha \) sin encontrar \( \alpha \), usamos la identidad \( \cos 2\alpha = 2\cos^2\alpha - 1 \). Con \( \cos \frac{\alpha}{2} = -\frac{1}{3} \), calculamos \( \cos \alpha = -\frac{7}{9} \) y luego \( \cos 2\alpha = \frac{17}{81} \).

Solution

Para encontrar \( \cos 2\alpha \) sin encontrar el ángulo \( \alpha \), podemos utilizar la identidad trigonométrica \( \cos 2\alpha = 2\cos^2\alpha - 1 \). Dado que \( \cos \frac{\alpha}{2} = -\frac{1}{3} \), podemos encontrar \( \cos \alpha \) utilizando la identidad trigonométrica \( \cos \alpha = 2\cos^2\frac{\alpha}{2} - 1 \). Primero, calculamos \( \cos \alpha \): \[ \cos \alpha = 2\left(-\frac{1}{3}\right)^2 - 1 = 2\left(\frac{1}{9}\right) - 1 = \frac{2}{9} - 1 = -\frac{7}{9} \] Ahora, podemos encontrar \( \cos 2\alpha \) utilizando la identidad \( \cos 2\alpha = 2\cos^2\alpha - 1 \): \[ \cos 2\alpha = 2\left(-\frac{7}{9}\right)^2 - 1 = 2\left(\frac{49}{81}\right) - 1 = \frac{98}{81} - 1 = \frac{17}{81} \] Por lo tanto, \( \cos 2\alpha = \frac{17}{81} \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Para resolver el problema, empezamos usando la fórmula de la identidad del coseno doble, que es \( \cos 2\alpha = 2\cos^2 \alpha - 1 \). Primero necesitamos encontrar \( \cos \alpha \) a partir de \( \cos \frac{\alpha}{2} \). Sabemos que \( \cos \frac{\alpha}{2} = -\frac{1}{3} \). Usamos la relación entre los cosenos: \[ \cos \alpha = 2 \cos^2 \frac{\alpha}{2} - 1 \] Sustituyendo \( \cos \frac{\alpha}{2} \): \[ \cos \alpha = 2 \left(-\frac{1}{3}\right)^2 - 1 = 2 \left(\frac{1}{9}\right) - 1 = \frac{2}{9} - 1 = \frac{2}{9} - \frac{9}{9} = -\frac{7}{9} \] Ahora que tenemos \( \cos \alpha \), podemos calcular \( \cos 2\alpha \): \[ \cos 2\alpha = 2 \cos^2 \alpha - 1 \] Sustituyendo \( \cos \alpha = -\frac{7}{9} \): \[ \cos 2\alpha = 2 \left(-\frac{7}{9}\right)^2 - 1 = 2 \left(\frac{49}{81}\right) - 1 = \frac{98}{81} - 1 = \frac{98}{81} - \frac{81}{81} = \frac{17}{81} \] Por lo tanto, el resultado es: \[ \cos 2\alpha = \frac{17}{81} \]

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy