Answer
a. 2
b. 1.5
c. 1.6667
d. 9
e. 4
f. 2.3704
Solution
Calculate the value by following steps:
- step0: Calculate:
\(\frac{3}{4}-3\)
- step1: Reduce fractions to a common denominator:
\(\frac{3}{4}-\frac{3\times 4}{4}\)
- step2: Transform the expression:
\(\frac{3-3\times 4}{4}\)
- step3: Multiply the numbers:
\(\frac{3-12}{4}\)
- step4: Subtract the numbers:
\(\frac{-9}{4}\)
- step5: Rewrite the fraction:
\(-\frac{9}{4}\)
Calculate or simplify the expression \( (1/2)^-1 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{1}{2}-1\)
- step1: Reduce fractions to a common denominator:
\(\frac{1}{2}-\frac{2}{2}\)
- step2: Transform the expression:
\(\frac{1-2}{2}\)
- step3: Subtract the numbers:
\(\frac{-1}{2}\)
- step4: Rewrite the fraction:
\(-\frac{1}{2}\)
Calculate or simplify the expression \( (3/5)^-1 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{3}{5}-1\)
- step1: Reduce fractions to a common denominator:
\(\frac{3}{5}-\frac{5}{5}\)
- step2: Transform the expression:
\(\frac{3-5}{5}\)
- step3: Subtract the numbers:
\(\frac{-2}{5}\)
- step4: Rewrite the fraction:
\(-\frac{2}{5}\)
Calculate or simplify the expression \( (2/3)^-1 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{2}{3}-1\)
- step1: Reduce fractions to a common denominator:
\(\frac{2}{3}-\frac{3}{3}\)
- step2: Transform the expression:
\(\frac{2-3}{3}\)
- step3: Subtract the numbers:
\(\frac{-1}{3}\)
- step4: Rewrite the fraction:
\(-\frac{1}{3}\)
Calculate or simplify the expression \( (1/3)^-2 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{1}{3}-2\)
- step1: Reduce fractions to a common denominator:
\(\frac{1}{3}-\frac{2\times 3}{3}\)
- step2: Transform the expression:
\(\frac{1-2\times 3}{3}\)
- step3: Multiply the numbers:
\(\frac{1-6}{3}\)
- step4: Subtract the numbers:
\(\frac{-5}{3}\)
- step5: Rewrite the fraction:
\(-\frac{5}{3}\)
Let's solve each part step by step:
### a. \( \left(\frac{1}{2}\right)^{-1} \)
The negative exponent indicates that we take the reciprocal of the base:
\[
\left(\frac{1}{2}\right)^{-1} = \frac{1}{\frac{1}{2}} = 2
\]
### b. \( \left(\frac{2}{3}\right)^{-1} \)
Similarly, we take the reciprocal:
\[
\left(\frac{2}{3}\right)^{-1} = \frac{1}{\frac{2}{3}} = \frac{3}{2} = 1.5
\]
### c. \( \left(\frac{3}{5}\right)^{-1} \)
Taking the reciprocal again:
\[
\left(\frac{3}{5}\right)^{-1} = \frac{1}{\frac{3}{5}} = \frac{5}{3} \approx 1.6667
\]
### d. \( \left(\frac{1}{3}\right)^{-2} \)
For a negative exponent squared, we first take the reciprocal and then square it:
\[
\left(\frac{1}{3}\right)^{-2} = \left(\frac{3}{1}\right)^{2} = 3^2 = 9
\]
### e. \( \frac{1}{2^{-2}} \)
Calculating \( 2^{-2} \):
\[
2^{-2} = \frac{1}{2^2} = \frac{1}{4}
\]
Thus,
\[
\frac{1}{2^{-2}} = \frac{1}{\frac{1}{4}} = 4
\]
### f. \( \left(\frac{3}{4}\right)^{-3} \)
Taking the reciprocal and cubing:
\[
\left(\frac{3}{4}\right)^{-3} = \left(\frac{4}{3}\right)^{3} = \frac{4^3}{3^3} = \frac{64}{27} \approx 2.3704
\]
### Summary of Results:
- a. \( 2 \)
- b. \( 1.5 \)
- c. \( \frac{5}{3} \) or approximately \( 1.6667 \)
- d. \( 9 \)
- e. \( 4 \)
- f. \( \frac{64}{27} \) or approximately \( 2.3704 \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution