294 1) \( \frac{\log _{3} 8}{\log _{3} 16} \); 2) \( \frac{\log _{5} 27}{\log _{5} 9} \); 3) \( \frac{\log _{5} 36-\log _{5} 12}{\log _{5} 9} \); 4) \( \frac{\log _{7} 8}{\log _{7} 15-\log _{7} 30} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Let’s break these down into manageable pieces and find their values! 1) \( \frac{\log _{3} 8}{\log _{3} 16} = \frac{\log_{3}(2^3)}{\log_{3}(2^4)} = \frac{3 \log_{3} 2}{4 \log_{3} 2} = \frac{3}{4} \) 2) \( \frac{\log _{5} 27}{\log _{5} 9} = \frac{\log_{5}(3^3)}{\log_{5}(3^2)} = \frac{3 \log_{5} 3}{2 \log_{5} 3} = \frac{3}{2} \) 3) \( \frac{\log _{5} 36 - \log _{5} 12}{\log _{5} 9} = \frac{\log_{5}\left(\frac{36}{12}\right)}{\log_{5}(3^2)} = \frac{\log_{5}(3)}{2 \log_{5}(3)} = \frac{1}{2} \) 4) \( \frac{\log _{7} 8}{\log _{7} 15 - \log _{7} 30} = \frac{\log_{7}(2^3)}{\log_{7}\left(\frac{15}{30}\right)} = \frac{3 \log_{7} 2}{\log_{7}(0.5)} \) Using the change of base property: \( \log_{7}(0.5) = -\log_{7}(2) \) Thus, \( \frac{3 \log_{7} 2}{-\log_{7}(2)} = -3 \) In summary: 1) \( \frac{3}{4} \) 2) \( \frac{3}{2} \) 3) \( \frac{1}{2} \) 4) \( -3 \)