Answer
\( x=\frac{\pi}{30}+\frac{k\pi}{15} \)
Solution
Solve the equation \( \tan(10x)=\cot(5x) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\tan\left(10x\right)=\cot\left(5x\right)\)
- step1: Find the domain:
\(\tan\left(10x\right)=\cot\left(5x\right),x\neq \left\{ \begin{array}{l}\frac{k\pi }{5}\\\frac{\pi }{20}+\frac{k\pi }{10}\end{array}\right.,k \in \mathbb{Z}\)
- step2: Rewrite the expression:
\(\tan\left(10x\right)=\frac{\cos\left(5x\right)}{\sin\left(5x\right)}\)
- step3: Rewrite the expression:
\(\frac{2\tan\left(5x\right)}{1-\tan^{2}\left(5x\right)}=\frac{\cos\left(5x\right)}{\sin\left(5x\right)}\)
- step4: Rewrite the expression:
\(\frac{2\times \frac{\sin\left(5x\right)}{\cos\left(5x\right)}}{1-\left(\frac{\sin\left(5x\right)}{\cos\left(5x\right)}\right)^{2}}=\frac{\cos\left(5x\right)}{\sin\left(5x\right)}\)
- step5: Expand the expression:
\(\frac{\frac{2\sin\left(5x\right)}{\cos\left(5x\right)}}{1-\frac{\sin^{2}\left(5x\right)}{\cos^{2}\left(5x\right)}}=\frac{\cos\left(5x\right)}{\sin\left(5x\right)}\)
- step6: Calculate:
\(\frac{2\sin\left(5x\right)\cos\left(5x\right)}{\cos^{2}\left(5x\right)-\sin^{2}\left(5x\right)}=\frac{\cos\left(5x\right)}{\sin\left(5x\right)}\)
- step7: Cross multiply:
\(2\sin\left(5x\right)\cos\left(5x\right)\sin\left(5x\right)=\left(\cos^{2}\left(5x\right)-\sin^{2}\left(5x\right)\right)\cos\left(5x\right)\)
- step8: Simplify the equation:
\(2\sin^{2}\left(5x\right)\cos\left(5x\right)=\left(\cos^{2}\left(5x\right)-\sin^{2}\left(5x\right)\right)\cos\left(5x\right)\)
- step9: Rewrite the expression:
\(2\cos\left(5x\right)-2\cos^{3}\left(5x\right)=2\cos^{3}\left(5x\right)-\cos\left(5x\right)\)
- step10: Move the expression to the left side:
\(2\cos\left(5x\right)-2\cos^{3}\left(5x\right)-\left(2\cos^{3}\left(5x\right)-\cos\left(5x\right)\right)=0\)
- step11: Calculate:
\(3\cos\left(5x\right)-4\cos^{3}\left(5x\right)=0\)
- step12: Factor the expression:
\(\cos\left(5x\right)\left(3-4\cos^{2}\left(5x\right)\right)=0\)
- step13: Separate into possible cases:
\(\begin{align}&\cos\left(5x\right)=0\\&3-4\cos^{2}\left(5x\right)=0\end{align}\)
- step14: Solve the equation:
\(\begin{align}&x=\frac{\pi }{10}+\frac{k\pi }{5},k \in \mathbb{Z}\\&x=\left\{ \begin{array}{l}\frac{\pi }{30}+\frac{k\pi }{5}\\\frac{\pi }{6}+\frac{k\pi }{5}\end{array}\right.,k \in \mathbb{Z}\end{align}\)
- step15: Find the union:
\(x=\frac{\pi }{30}+\frac{k\pi }{15},k \in \mathbb{Z}\)
- step16: Check if the solution is in the defined range:
\(x=\frac{\pi }{30}+\frac{k\pi }{15},k \in \mathbb{Z},x\neq \left\{ \begin{array}{l}\frac{k\pi }{5}\\\frac{\pi }{20}+\frac{k\pi }{10}\end{array}\right.,k \in \mathbb{Z}\)
- step17: Find the intersection:
\(x=\frac{\pi }{30}+\frac{k\pi }{15},k \in \mathbb{Z}\)
The solution to the equation \( \tan(10x)=\cot(5x) \) is \( x=\frac{\pi}{30}+\frac{k\pi}{15} \), where \( k \) is an integer.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution