Question
upstudy study bank question image url

(b) Simplify the following: \( \begin{array}{lll}\text { (1) } 2^{x} \cdot 2^{x} & \text { (2) } & \left(2^{5}\right)^{x} \\ \text { (4) } 2^{x} \cdot 2^{3} & \text { (5) } & \left(5^{3} \cdot 3^{5}\right)^{x} \\ \text { (7) } 81^{x} \cdot 27^{2 x} & \text { (8) } \frac{5^{x} \cdot 5^{x}}{25^{x}} & \text { (3) } \\ \left(3^{x}\right)^{3} \\ 9^{x} \cdot 3^{2 x} \\ \text { (10) } \frac{7^{x} \cdot 7^{2 x}}{\left(7^{2} \cdot 7\right)^{x}} & \text { (11) } \frac{25 \cdot 9^{x}}{3^{x} \cdot 3^{x} \cdot 5} & \text { (9) } \frac{\left(2^{x}\right)^{3} \cdot 2^{x}}{16^{x}} \\ \text { (13) } \frac{12^{x} \cdot 3^{-x}}{2 \cdot 4^{x}} & \text { (14) } \frac{32^{x}}{4^{x}} & \text { (12) } \frac{\left(2^{x}\right)^{3} \cdot 27^{x}}{8^{x} \cdot\left(3^{2}\right)^{x} \cdot 3^{x}}\end{array} \)

Ask by Ray Summers. in South Africa
Feb 28,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the simplified answers for each expression: 1. \( 2^{2x} \) 2. \( 2^{5x} \) 3. \( 3^{3x} \) 4. \( 2^{x+3} \) 5. \( 5^{3x} \cdot 3^{5x} \) 6. \( 3^{10x} \) 7. \( 1 \) 8. \( 1 \) 9. \( 1 \) 10. \( 1 \) 11. \( 5 \) 12. \( 1 \) 13. \( \frac{1}{2} \) 14. \( 2^{3x} \) Any equivalent expression is also correct.

Solution

We wish to simplify each expression. One acceptable answer for each is shown below. ────────────────────────────── 1.  2ˣ · 2ˣ   • When multiplying with the same base, we add exponents.   • 2ˣ · 2ˣ = 2^(x + x) = 2^(2x). ────────────────────────────── 2.  (2⁵)ˣ   • When raising a power to a power, multiply exponents.   • (2⁵)ˣ = 2^(5x). ────────────────────────────── 3.  (3ˣ)³   • (3ˣ)³ = 3^(x·3) = 3^(3x). ────────────────────────────── 4.  2ˣ · 2³   • Same base: add the exponents.   • 2ˣ · 2³ = 2^(x + 3). ────────────────────────────── 5.  (5³ · 3⁵)ˣ   • When a product is raised to a power, distribute the exponent.   • (5³ · 3⁵)ˣ = 5^(3x) · 3^(5x). ────────────────────────────── 7.  81ˣ · 27^(2x)   • Write each number as a power of 3: 81 = 3⁴ and 27 = 3³.   • Then 81ˣ = (3⁴)ˣ = 3^(4x) and 27^(2x) = (3³)^(2x) = 3^(6x).   • Multiply: 3^(4x) · 3^(6x) = 3^(4x + 6x) = 3^(10x). ────────────────────────────── 8.  (5ˣ · 5ˣ)⁄(25ˣ)   • Multiply numerator: 5ˣ · 5ˣ = 5^(x + x) = 5^(2x).   • But 25 = 5² so 25ˣ = (5²)ˣ = 5^(2x).   • Thus, 5^(2x)/5^(2x) = 1. ────────────────────────────── 9.  [(2ˣ)³ · 2ˣ]⁄(16ˣ)   • (2ˣ)³ = 2^(3x) so the numerator is 2^(3x) · 2ˣ = 2^(4x).   • Since 16 = 2⁴, 16ˣ = (2⁴)ˣ = 2^(4x).   • Therefore 2^(4x)/2^(4x) = 1. ────────────────────────────── 10.  [7ˣ · 7^(2x)]⁄[(7² · 7)ˣ]   • In the numerator, 7ˣ · 7^(2x) = 7^(x + 2x) = 7^(3x).   • In the denominator, 7² · 7 = 7^(2+1) = 7³ so (7² · 7)ˣ = (7³)ˣ = 7^(3x).   • Thus, the expression equals 7^(3x)/7^(3x) = 1. ────────────────────────────── 11.  (25 · 9ˣ)⁄(3ˣ · 3ˣ · 5)   • First, note 3ˣ · 3ˣ = 3^(2x).   • Write 25/5 = 5.   • Also, 9 = 3² so 9ˣ = (3²)ˣ = 3^(2x).   • Then the expression becomes 5 · 3^(2x)/3^(2x) = 5. ────────────────────────────── 12.  [(2ˣ)³ · 27ˣ]⁄[8ˣ · (3²)ˣ · 3ˣ]   • Write (2ˣ)³ = 2^(3x) and 27 = 3³ so 27ˣ = 3^(3x).   • Write 8 = 2³ so 8ˣ = 2^(3x).   • Also, (3²)ˣ = 3^(2x). Then multiplying denominator factors: 3^(2x) · 3ˣ = 3^(3x).   • So the expression is (2^(3x) · 3^(3x))/(2^(3x) · 3^(3x)) = 1. ────────────────────────────── 13.  (12ˣ · 3^(–x))⁄(2 · 4ˣ)   • Write 12 = 2² · 3 so 12ˣ = (2² · 3)ˣ = 2^(2x) · 3ˣ.   • Then the numerator becomes 2^(2x) · 3ˣ · 3^(–x) = 2^(2x) (since 3ˣ · 3^(–x)=3^(0)=1).   • Write 4 = 2² so 4ˣ = 2^(2x).   • Denominator now is 2 · 2^(2x) = 2^(2x+1).   • Thus, the expression is 2^(2x)/2^(2x+1) = 1/2. ────────────────────────────── 14.  32ˣ⁄4ˣ   • Write 32 = 2⁵ and 4 = 2².   • Then 32ˣ = 2^(5x) and 4ˣ = 2^(2x).   • Thus, the expression is 2^(5x)/2^(2x) = 2^(3x). ────────────────────────────── Summarizing the answers:  (1) 2^(2x)  (2) 2^(5x)  (3) 3^(3x)  (4) 2^(x+3)  (5) 5^(3x) · 3^(5x)  (7) 3^(10x)  (8) 1  (9) 1  (10) 1  (11) 5  (12) 1  (13) ½  (14) 2^(3x) Any answer equivalent to these is correct.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify these expressions, I'll go through them one at a time: 1. \( 2^{x} \cdot 2^{x} = 2^{2x} \) 2. \( \left(2^{5}\right)^{x} = 2^{5x} \) 4. \( 2^{x} \cdot 2^{3} = 2^{x+3} \) 5. \( \left(5^{3} \cdot 3^{5}\right)^{x} = 5^{3x} \cdot 3^{5x} \) 7. \( 81^{x} \cdot 27^{2x} = (3^{4})^{x} \cdot (3^{3})^{2x} = 3^{4x} \cdot 3^{6x} = 3^{10x} \) 8. \( \frac{5^{x} \cdot 5^{x}}{25^{x}} = \frac{5^{2x}}{5^{2x}} = 1 \) 3. \( \left(3^{x}\right)^{3} = 3^{3x} \) 9. \( 9^{x} \cdot 3^{2x} = (3^{2})^{x} \cdot 3^{2x} = 3^{2x} \cdot 3^{2x} = 3^{4x} \) 10. \( \frac{7^{x} \cdot 7^{2x}}{\left(7^{2} \cdot 7\right)^{x}} = \frac{7^{3x}}{7^{3x}} = 1 \) 11. \( \frac{25 \cdot 9^{x}}{3^{x} \cdot 3^{x} \cdot 5} = \frac{25 \cdot 3^{4x}}{5 \cdot 3^{2x}} = \frac{5^{2} \cdot 3^{4x}}{5 \cdot 3^{2x}} = 5 \cdot 3^{2x} \) 12. \( \frac{\left(2^{x}\right)^{3} \cdot 27^{x}}{8^{x} \cdot\left(3^{2}\right)^{x} \cdot 3^{x}} = \frac{2^{3x} \cdot (3^{3})^{x}}{(2^{3})^{x} \cdot (3^{3})^{x}} = \frac{2^{3x}}{2^{3x}} = 1 \) 13. \( \frac{12^{x} \cdot 3^{-x}}{2 \cdot 4^{x}} = \frac{(3 \cdot 4)^{x} \cdot 3^{-x}}{2 \cdot (2^{2})^{x}} = \frac{3^{x} \cdot 4^{x} \cdot 3^{-x}}{2 \cdot 2^{2x}} = \frac{4^{x}}{2^{1 + 2x}} = \frac{2^{2x}}{2^{1 + 2x}} = 2^{-1} = \frac{1}{2} \) 14. \( \frac{32^{x}}{4^{x}} = \frac{2^{5x}}{(2^{2})^{x}} = \frac{2^{5x}}{2^{2x}} = 2^{3x} \) So the final simplified forms are: 1. \( 2^{2x} \) 2. \( 2^{5x} \) 4. \( 2^{x+3} \) 5. \( 5^{3x} \cdot 3^{5x} \) 7. \( 3^{10x} \) 8. \( 1 \) 3. \( 3^{3x} \) 9. \( 3^{4x} \) 10. \( 1 \) 11. \( 5 \cdot 3^{2x} \) 12. \( 1 \) 13. \( \frac{1}{2} \) 14. \( 2^{3x} \)

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy