(b) Simplify the following: \( \begin{array}{lll}\text { (1) } 2^{x} \cdot 2^{x} & \text { (2) } & \left(2^{5}\right)^{x} \\ \text { (4) } 2^{x} \cdot 2^{3} & \text { (5) } & \left(5^{3} \cdot 3^{5}\right)^{x} \\ \text { (7) } 81^{x} \cdot 27^{2 x} & \text { (8) } \frac{5^{x} \cdot 5^{x}}{25^{x}} & \text { (3) } \\ \left(3^{x}\right)^{3} \\ 9^{x} \cdot 3^{2 x} \\ \text { (10) } \frac{7^{x} \cdot 7^{2 x}}{\left(7^{2} \cdot 7\right)^{x}} & \text { (11) } \frac{25 \cdot 9^{x}}{3^{x} \cdot 3^{x} \cdot 5} & \text { (9) } \frac{\left(2^{x}\right)^{3} \cdot 2^{x}}{16^{x}} \\ \text { (13) } \frac{12^{x} \cdot 3^{-x}}{2 \cdot 4^{x}} & \text { (14) } \frac{32^{x}}{4^{x}} & \text { (12) } \frac{\left(2^{x}\right)^{3} \cdot 27^{x}}{8^{x} \cdot\left(3^{2}\right)^{x} \cdot 3^{x}}\end{array} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To simplify these expressions, I'll go through them one at a time: 1. \( 2^{x} \cdot 2^{x} = 2^{2x} \) 2. \( \left(2^{5}\right)^{x} = 2^{5x} \) 4. \( 2^{x} \cdot 2^{3} = 2^{x+3} \) 5. \( \left(5^{3} \cdot 3^{5}\right)^{x} = 5^{3x} \cdot 3^{5x} \) 7. \( 81^{x} \cdot 27^{2x} = (3^{4})^{x} \cdot (3^{3})^{2x} = 3^{4x} \cdot 3^{6x} = 3^{10x} \) 8. \( \frac{5^{x} \cdot 5^{x}}{25^{x}} = \frac{5^{2x}}{5^{2x}} = 1 \) 3. \( \left(3^{x}\right)^{3} = 3^{3x} \) 9. \( 9^{x} \cdot 3^{2x} = (3^{2})^{x} \cdot 3^{2x} = 3^{2x} \cdot 3^{2x} = 3^{4x} \) 10. \( \frac{7^{x} \cdot 7^{2x}}{\left(7^{2} \cdot 7\right)^{x}} = \frac{7^{3x}}{7^{3x}} = 1 \) 11. \( \frac{25 \cdot 9^{x}}{3^{x} \cdot 3^{x} \cdot 5} = \frac{25 \cdot 3^{4x}}{5 \cdot 3^{2x}} = \frac{5^{2} \cdot 3^{4x}}{5 \cdot 3^{2x}} = 5 \cdot 3^{2x} \) 12. \( \frac{\left(2^{x}\right)^{3} \cdot 27^{x}}{8^{x} \cdot\left(3^{2}\right)^{x} \cdot 3^{x}} = \frac{2^{3x} \cdot (3^{3})^{x}}{(2^{3})^{x} \cdot (3^{3})^{x}} = \frac{2^{3x}}{2^{3x}} = 1 \) 13. \( \frac{12^{x} \cdot 3^{-x}}{2 \cdot 4^{x}} = \frac{(3 \cdot 4)^{x} \cdot 3^{-x}}{2 \cdot (2^{2})^{x}} = \frac{3^{x} \cdot 4^{x} \cdot 3^{-x}}{2 \cdot 2^{2x}} = \frac{4^{x}}{2^{1 + 2x}} = \frac{2^{2x}}{2^{1 + 2x}} = 2^{-1} = \frac{1}{2} \) 14. \( \frac{32^{x}}{4^{x}} = \frac{2^{5x}}{(2^{2})^{x}} = \frac{2^{5x}}{2^{2x}} = 2^{3x} \) So the final simplified forms are: 1. \( 2^{2x} \) 2. \( 2^{5x} \) 4. \( 2^{x+3} \) 5. \( 5^{3x} \cdot 3^{5x} \) 7. \( 3^{10x} \) 8. \( 1 \) 3. \( 3^{3x} \) 9. \( 3^{4x} \) 10. \( 1 \) 11. \( 5 \cdot 3^{2x} \) 12. \( 1 \) 13. \( \frac{1}{2} \) 14. \( 2^{3x} \)