Answer
Aquí están los resultados de las expresiones evaluadas:
1. \( \frac{h}{c}+a-d \)
- Resultado: \( \frac{15h+2}{6} \)
2. \( a+b+c+d \)
- Resultado: \( \frac{59}{60} \) o \( 0.98\dot{3} \)
3. \( c=a+\frac{b}{a} \)
- Resultado: Falso (la ecuación no se cumple con los valores dados)
4. \( \frac{a}{b}+\frac{a}{c} \)
- Resultado: \( \frac{35}{36} \) o \( 0.97\dot{2} \)
5. \( b^{2}-d \)
- Resultado: \( \frac{1}{16} \) o \( 0.0625 \)
6. \( a+\frac{a}{b}-c \)
- Resultado: \( -\frac{61}{90} \) o \( -0.6\dot{7} \)
7. \( a^{2}+b \)
- Resultado: \( -\frac{1}{18} \) o \( -0.0\dot{5} \)
8. \( b-c+d \)
- Resultado: \( -\frac{13}{20} \) o \( -0.65 \)
9. \( \frac{c}{a}-b^{2} \)
- Resultado: \( -\frac{33}{400} \) o \( -0.0825 \)
Si necesitas más detalles sobre algún cálculo específico, házmelo saber.
Solution
Evaluate the expression by following steps:
- step0: Evaluate:
\(b^{2}-d\)
- step1: Substitute:
\(\left(-\frac{3}{4}\right)^{2}-\frac{1}{2}\)
- step2: Simplify:
\(\frac{3^{2}}{4^{2}}-\frac{1}{2}\)
- step3: Evaluate the power:
\(\frac{9}{16}-\frac{1}{2}\)
- step4: Reduce fractions to a common denominator:
\(\frac{9}{16}-\frac{8}{2\times 8}\)
- step5: Multiply the numbers:
\(\frac{9}{16}-\frac{8}{16}\)
- step6: Transform the expression:
\(\frac{9-8}{16}\)
- step7: Subtract the numbers:
\(\frac{1}{16}\)
Substitute \( a=\frac{5}{6},b=-\frac{3}{4} \) into the expression \( a^{2}+b \).
Evaluate the expression by following steps:
- step0: Evaluate:
\(a^{2}+b\)
- step1: Substitute:
\(\left(\frac{5}{6}\right)^{2}-\frac{3}{4}\)
- step2: Simplify:
\(\frac{5^{2}}{6^{2}}-\frac{3}{4}\)
- step3: Evaluate the power:
\(\frac{25}{36}-\frac{3}{4}\)
- step4: Reduce fractions to a common denominator:
\(\frac{25}{36}-\frac{3\times 9}{4\times 9}\)
- step5: Multiply the numbers:
\(\frac{25}{36}-\frac{3\times 9}{36}\)
- step6: Transform the expression:
\(\frac{25-3\times 9}{36}\)
- step7: Multiply the numbers:
\(\frac{25-27}{36}\)
- step8: Subtract the numbers:
\(\frac{-2}{36}\)
- step9: Reduce the fraction:
\(\frac{-1}{18}\)
- step10: Rewrite the fraction:
\(-\frac{1}{18}\)
Substitute \( a=\frac{5}{6},b=-\frac{3}{4},c=0.4,d=\frac{1}{2} \) into the expression \( b-c+d \).
Evaluate the expression by following steps:
- step0: Evaluate:
\(b-c+d\)
- step1: Substitute:
\(-\frac{3}{4}-0.4+\frac{1}{2}\)
- step2: Rewrite the expression:
\(-\frac{3}{4}-\frac{2}{5}+\frac{1}{2}\)
- step3: Reduce fractions to a common denominator:
\(-\frac{3\times 5}{4\times 5}-\frac{2\times 4}{5\times 4}+\frac{10}{2\times 10}\)
- step4: Multiply the numbers:
\(-\frac{3\times 5}{20}-\frac{2\times 4}{5\times 4}+\frac{10}{2\times 10}\)
- step5: Multiply the numbers:
\(-\frac{3\times 5}{20}-\frac{2\times 4}{20}+\frac{10}{2\times 10}\)
- step6: Multiply the numbers:
\(-\frac{3\times 5}{20}-\frac{2\times 4}{20}+\frac{10}{20}\)
- step7: Transform the expression:
\(\frac{-3\times 5-2\times 4+10}{20}\)
- step8: Multiply the numbers:
\(\frac{-15-2\times 4+10}{20}\)
- step9: Multiply the numbers:
\(\frac{-15-8+10}{20}\)
- step10: Calculate:
\(\frac{-13}{20}\)
- step11: Rewrite the fraction:
\(-\frac{13}{20}\)
Substitute \( a=\frac{5}{6},b=-\frac{3}{4},c=0.4 \) into the expression \( \frac{c}{a}-b^{2} \).
Evaluate the expression by following steps:
- step0: Evaluate:
\(\frac{c}{a}-b^{2}\)
- step1: Substitute:
\(\frac{0.4}{\frac{5}{6}}-\left(-\frac{3}{4}\right)^{2}\)
- step2: Divide the terms:
\(\frac{12}{25}-\left(-\frac{3}{4}\right)^{2}\)
- step3: Rewrite the expression:
\(\frac{12}{25}-\frac{3^{2}}{4^{2}}\)
- step4: Evaluate the power:
\(\frac{12}{25}-\frac{9}{16}\)
- step5: Reduce fractions to a common denominator:
\(\frac{12\times 16}{25\times 16}-\frac{9\times 25}{16\times 25}\)
- step6: Multiply the numbers:
\(\frac{12\times 16}{400}-\frac{9\times 25}{16\times 25}\)
- step7: Multiply the numbers:
\(\frac{12\times 16}{400}-\frac{9\times 25}{400}\)
- step8: Transform the expression:
\(\frac{12\times 16-9\times 25}{400}\)
- step9: Multiply the numbers:
\(\frac{192-9\times 25}{400}\)
- step10: Multiply the numbers:
\(\frac{192-225}{400}\)
- step11: Subtract the numbers:
\(\frac{-33}{400}\)
- step12: Rewrite the fraction:
\(-\frac{33}{400}\)
Substitute \( a=\frac{5}{6},b=-\frac{3}{4},c=0.4,d=\frac{1}{2} \) into the expression \( \frac{h}{c}+a-d \).
Evaluate the expression by following steps:
- step0: Evaluate:
\(\frac{h}{c}+a-d\)
- step1: Substitute:
\(\frac{h}{0.4}+\frac{5}{6}-\frac{1}{2}\)
- step2: Divide the terms:
\(\frac{5h}{2}+\frac{5}{6}-\frac{1}{2}\)
- step3: Reduce fractions to a common denominator:
\(\frac{5h\times 3}{2\times 3}+\frac{5}{6}-\frac{3}{2\times 3}\)
- step4: Multiply the numbers:
\(\frac{5h\times 3}{6}+\frac{5}{6}-\frac{3}{2\times 3}\)
- step5: Multiply the numbers:
\(\frac{5h\times 3}{6}+\frac{5}{6}-\frac{3}{6}\)
- step6: Transform the expression:
\(\frac{5h\times 3+5-3}{6}\)
- step7: Multiply the terms:
\(\frac{15h+5-3}{6}\)
- step8: Subtract the numbers:
\(\frac{15h+2}{6}\)
Substitute \( a=\frac{5}{6},b=-\frac{3}{4},c=0.4 \) into the expression \( \frac{a}{b}+\frac{a}{c} \).
Evaluate the expression by following steps:
- step0: Evaluate:
\(\frac{a}{b}+\frac{a}{c}\)
- step1: Substitute:
\(\frac{\frac{5}{6}}{-\frac{3}{4}}+\frac{\frac{5}{6}}{0.4}\)
- step2: Divide the terms:
\(-\frac{10}{9}+\frac{\frac{5}{6}}{0.4}\)
- step3: Divide the numbers:
\(-\frac{10}{9}+\frac{25}{12}\)
- step4: Reduce fractions to a common denominator:
\(-\frac{10\times 4}{9\times 4}+\frac{25\times 3}{12\times 3}\)
- step5: Multiply the numbers:
\(-\frac{10\times 4}{36}+\frac{25\times 3}{12\times 3}\)
- step6: Multiply the numbers:
\(-\frac{10\times 4}{36}+\frac{25\times 3}{36}\)
- step7: Transform the expression:
\(\frac{-10\times 4+25\times 3}{36}\)
- step8: Multiply the numbers:
\(\frac{-40+25\times 3}{36}\)
- step9: Multiply the numbers:
\(\frac{-40+75}{36}\)
- step10: Add the numbers:
\(\frac{35}{36}\)
Substitute \( a=\frac{5}{6},b=-\frac{3}{4},c=0.4,d=\frac{1}{2} \) into the expression \( a+b+c+d \).
Evaluate the expression by following steps:
- step0: Evaluate:
\(a+b+c+d\)
- step1: Substitute:
\(\frac{5}{6}-\frac{3}{4}+0.4+\frac{1}{2}\)
- step2: Rewrite the expression:
\(\frac{5}{6}-\frac{3}{4}+\frac{2}{5}+\frac{1}{2}\)
- step3: Reduce fractions to a common denominator:
\(\frac{5\times 2\times 5}{6\times 2\times 5}-\frac{3\times 3\times 5}{4\times 3\times 5}+\frac{2\times 2\times 3\times 2}{5\times 2\times 3\times 2}+\frac{30}{2\times 30}\)
- step4: Multiply the terms:
\(\frac{5\times 2\times 5}{60}-\frac{3\times 3\times 5}{4\times 3\times 5}+\frac{2\times 2\times 3\times 2}{5\times 2\times 3\times 2}+\frac{30}{2\times 30}\)
- step5: Multiply the terms:
\(\frac{5\times 2\times 5}{60}-\frac{3\times 3\times 5}{60}+\frac{2\times 2\times 3\times 2}{5\times 2\times 3\times 2}+\frac{30}{2\times 30}\)
- step6: Multiply the terms:
\(\frac{5\times 2\times 5}{60}-\frac{3\times 3\times 5}{60}+\frac{2\times 2\times 3\times 2}{60}+\frac{30}{2\times 30}\)
- step7: Multiply the numbers:
\(\frac{5\times 2\times 5}{60}-\frac{3\times 3\times 5}{60}+\frac{2\times 2\times 3\times 2}{60}+\frac{30}{60}\)
- step8: Transform the expression:
\(\frac{5\times 2\times 5-3\times 3\times 5+2\times 2\times 3\times 2+30}{60}\)
- step9: Multiply the terms:
\(\frac{50-3\times 3\times 5+2\times 2\times 3\times 2+30}{60}\)
- step10: Multiply the terms:
\(\frac{50-45+2\times 2\times 3\times 2+30}{60}\)
- step11: Multiply the terms:
\(\frac{50-45+24+30}{60}\)
- step12: Calculate:
\(\frac{59}{60}\)
Substitute \( a=\frac{5}{6},b=-\frac{3}{4},c=0.4 \) into the expression \( c=a+\frac{b}{a} \).
Evaluate the expression by following steps:
- step0: Evaluate:
\(c=a+\frac{b}{a}\)
- step1: Substitute:
\(0.4=\frac{5}{6}+\frac{-\frac{3}{4}}{\frac{5}{6}}\)
- step2: Divide the terms:
\(0.4=\frac{5}{6}-\frac{9}{10}\)
- step3: Subtract the numbers:
\(0.4=-\frac{1}{15}\)
- step4: Calculate:
\(0.4=-0.0\dot{6}\)
- step5: Check the equality:
\(\textrm{false}\)
Substitute \( a=\frac{5}{6},b=-\frac{3}{4},c=0.4 \) into the expression \( a+\frac{a}{b}-c \).
Evaluate the expression by following steps:
- step0: Evaluate:
\(a+\frac{a}{b}-c\)
- step1: Substitute:
\(\frac{5}{6}+\frac{\frac{5}{6}}{-\frac{3}{4}}-0.4\)
- step2: Divide the terms:
\(\frac{5}{6}-\frac{10}{9}-0.4\)
- step3: Rewrite the expression:
\(\frac{5}{6}-\frac{10}{9}-\frac{2}{5}\)
- step4: Reduce fractions to a common denominator:
\(\frac{5\times 3\times 5}{6\times 3\times 5}-\frac{10\times 2\times 5}{9\times 2\times 5}-\frac{2\times 3\times 2\times 3}{5\times 3\times 2\times 3}\)
- step5: Multiply the terms:
\(\frac{5\times 3\times 5}{90}-\frac{10\times 2\times 5}{9\times 2\times 5}-\frac{2\times 3\times 2\times 3}{5\times 3\times 2\times 3}\)
- step6: Multiply the terms:
\(\frac{5\times 3\times 5}{90}-\frac{10\times 2\times 5}{90}-\frac{2\times 3\times 2\times 3}{5\times 3\times 2\times 3}\)
- step7: Multiply the terms:
\(\frac{5\times 3\times 5}{90}-\frac{10\times 2\times 5}{90}-\frac{2\times 3\times 2\times 3}{90}\)
- step8: Transform the expression:
\(\frac{5\times 3\times 5-10\times 2\times 5-2\times 3\times 2\times 3}{90}\)
- step9: Multiply the terms:
\(\frac{75-10\times 2\times 5-2\times 3\times 2\times 3}{90}\)
- step10: Multiply the terms:
\(\frac{75-100-2\times 3\times 2\times 3}{90}\)
- step11: Multiply the terms:
\(\frac{75-100-36}{90}\)
- step12: Subtract the numbers:
\(\frac{-61}{90}\)
- step13: Rewrite the fraction:
\(-\frac{61}{90}\)
Aquí están los resultados de las expresiones evaluadas:
1. \( \frac{h}{c}+a-d \)
- Resultado: \( \frac{15h+2}{6} \)
2. \( a+b+c+d \)
- Resultado: \( \frac{59}{60} \) o \( 0.98\dot{3} \)
3. \( c=a+\frac{b}{a} \)
- Resultado: \( \text{false} \) (esto indica que la ecuación no se cumple con los valores dados)
4. \( \frac{a}{b}+\frac{a}{c} \)
- Resultado: \( \frac{35}{36} \) o \( 0.97\dot{2} \)
5. \( b^{2}-d \)
- Resultado: \( \frac{1}{16} \) o \( 0.0625 \)
6. \( a+\frac{a}{b}-c \)
- Resultado: \( -\frac{61}{90} \) o \( -0.6\dot{7} \)
7. \( a^{2}+b \)
- Resultado: \( -\frac{1}{18} \) o \( -0.0\dot{5} \)
8. \( b-c+d \)
- Resultado: \( -\frac{13}{20} \) o \( -0.65 \)
9. \( \frac{c}{a}-b^{2} \)
- Resultado: \( -\frac{33}{400} \) o \( -0.0825 \)
Si necesitas más detalles sobre algún cálculo específico, házmelo saber.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution