Question
upstudy study bank question image url

Evaluate each expression if \( a=\frac{5}{6} b=-\frac{3}{4}, c \equiv 0,4 \), and \( d=\frac{1}{2} \), (Example 1) \( \frac{h}{c}+a-d \) 2. \( a+b+c+d \) 3. \( c=a+\frac{b}{a} \) \( \frac{a}{b}+\frac{a}{c} \) 5. \( b^{2}-d \) 6. \( a+\frac{a}{b}-c \) \[ a^{2}+b \] 8. \( b-c+d \) 9. \( \frac{c}{a}-b^{2} \)

Ask by Schmidt Gough. in Mexico
Jan 29,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Aquí están los resultados de las expresiones evaluadas: 1. \( \frac{h}{c}+a-d \) - Resultado: \( \frac{15h+2}{6} \) 2. \( a+b+c+d \) - Resultado: \( \frac{59}{60} \) o \( 0.98\dot{3} \) 3. \( c=a+\frac{b}{a} \) - Resultado: Falso (la ecuación no se cumple con los valores dados) 4. \( \frac{a}{b}+\frac{a}{c} \) - Resultado: \( \frac{35}{36} \) o \( 0.97\dot{2} \) 5. \( b^{2}-d \) - Resultado: \( \frac{1}{16} \) o \( 0.0625 \) 6. \( a+\frac{a}{b}-c \) - Resultado: \( -\frac{61}{90} \) o \( -0.6\dot{7} \) 7. \( a^{2}+b \) - Resultado: \( -\frac{1}{18} \) o \( -0.0\dot{5} \) 8. \( b-c+d \) - Resultado: \( -\frac{13}{20} \) o \( -0.65 \) 9. \( \frac{c}{a}-b^{2} \) - Resultado: \( -\frac{33}{400} \) o \( -0.0825 \) Si necesitas más detalles sobre algún cálculo específico, házmelo saber.

Solution

Evaluate the expression by following steps: - step0: Evaluate: \(b^{2}-d\) - step1: Substitute: \(\left(-\frac{3}{4}\right)^{2}-\frac{1}{2}\) - step2: Simplify: \(\frac{3^{2}}{4^{2}}-\frac{1}{2}\) - step3: Evaluate the power: \(\frac{9}{16}-\frac{1}{2}\) - step4: Reduce fractions to a common denominator: \(\frac{9}{16}-\frac{8}{2\times 8}\) - step5: Multiply the numbers: \(\frac{9}{16}-\frac{8}{16}\) - step6: Transform the expression: \(\frac{9-8}{16}\) - step7: Subtract the numbers: \(\frac{1}{16}\) Substitute \( a=\frac{5}{6},b=-\frac{3}{4} \) into the expression \( a^{2}+b \). Evaluate the expression by following steps: - step0: Evaluate: \(a^{2}+b\) - step1: Substitute: \(\left(\frac{5}{6}\right)^{2}-\frac{3}{4}\) - step2: Simplify: \(\frac{5^{2}}{6^{2}}-\frac{3}{4}\) - step3: Evaluate the power: \(\frac{25}{36}-\frac{3}{4}\) - step4: Reduce fractions to a common denominator: \(\frac{25}{36}-\frac{3\times 9}{4\times 9}\) - step5: Multiply the numbers: \(\frac{25}{36}-\frac{3\times 9}{36}\) - step6: Transform the expression: \(\frac{25-3\times 9}{36}\) - step7: Multiply the numbers: \(\frac{25-27}{36}\) - step8: Subtract the numbers: \(\frac{-2}{36}\) - step9: Reduce the fraction: \(\frac{-1}{18}\) - step10: Rewrite the fraction: \(-\frac{1}{18}\) Substitute \( a=\frac{5}{6},b=-\frac{3}{4},c=0.4,d=\frac{1}{2} \) into the expression \( b-c+d \). Evaluate the expression by following steps: - step0: Evaluate: \(b-c+d\) - step1: Substitute: \(-\frac{3}{4}-0.4+\frac{1}{2}\) - step2: Rewrite the expression: \(-\frac{3}{4}-\frac{2}{5}+\frac{1}{2}\) - step3: Reduce fractions to a common denominator: \(-\frac{3\times 5}{4\times 5}-\frac{2\times 4}{5\times 4}+\frac{10}{2\times 10}\) - step4: Multiply the numbers: \(-\frac{3\times 5}{20}-\frac{2\times 4}{5\times 4}+\frac{10}{2\times 10}\) - step5: Multiply the numbers: \(-\frac{3\times 5}{20}-\frac{2\times 4}{20}+\frac{10}{2\times 10}\) - step6: Multiply the numbers: \(-\frac{3\times 5}{20}-\frac{2\times 4}{20}+\frac{10}{20}\) - step7: Transform the expression: \(\frac{-3\times 5-2\times 4+10}{20}\) - step8: Multiply the numbers: \(\frac{-15-2\times 4+10}{20}\) - step9: Multiply the numbers: \(\frac{-15-8+10}{20}\) - step10: Calculate: \(\frac{-13}{20}\) - step11: Rewrite the fraction: \(-\frac{13}{20}\) Substitute \( a=\frac{5}{6},b=-\frac{3}{4},c=0.4 \) into the expression \( \frac{c}{a}-b^{2} \). Evaluate the expression by following steps: - step0: Evaluate: \(\frac{c}{a}-b^{2}\) - step1: Substitute: \(\frac{0.4}{\frac{5}{6}}-\left(-\frac{3}{4}\right)^{2}\) - step2: Divide the terms: \(\frac{12}{25}-\left(-\frac{3}{4}\right)^{2}\) - step3: Rewrite the expression: \(\frac{12}{25}-\frac{3^{2}}{4^{2}}\) - step4: Evaluate the power: \(\frac{12}{25}-\frac{9}{16}\) - step5: Reduce fractions to a common denominator: \(\frac{12\times 16}{25\times 16}-\frac{9\times 25}{16\times 25}\) - step6: Multiply the numbers: \(\frac{12\times 16}{400}-\frac{9\times 25}{16\times 25}\) - step7: Multiply the numbers: \(\frac{12\times 16}{400}-\frac{9\times 25}{400}\) - step8: Transform the expression: \(\frac{12\times 16-9\times 25}{400}\) - step9: Multiply the numbers: \(\frac{192-9\times 25}{400}\) - step10: Multiply the numbers: \(\frac{192-225}{400}\) - step11: Subtract the numbers: \(\frac{-33}{400}\) - step12: Rewrite the fraction: \(-\frac{33}{400}\) Substitute \( a=\frac{5}{6},b=-\frac{3}{4},c=0.4,d=\frac{1}{2} \) into the expression \( \frac{h}{c}+a-d \). Evaluate the expression by following steps: - step0: Evaluate: \(\frac{h}{c}+a-d\) - step1: Substitute: \(\frac{h}{0.4}+\frac{5}{6}-\frac{1}{2}\) - step2: Divide the terms: \(\frac{5h}{2}+\frac{5}{6}-\frac{1}{2}\) - step3: Reduce fractions to a common denominator: \(\frac{5h\times 3}{2\times 3}+\frac{5}{6}-\frac{3}{2\times 3}\) - step4: Multiply the numbers: \(\frac{5h\times 3}{6}+\frac{5}{6}-\frac{3}{2\times 3}\) - step5: Multiply the numbers: \(\frac{5h\times 3}{6}+\frac{5}{6}-\frac{3}{6}\) - step6: Transform the expression: \(\frac{5h\times 3+5-3}{6}\) - step7: Multiply the terms: \(\frac{15h+5-3}{6}\) - step8: Subtract the numbers: \(\frac{15h+2}{6}\) Substitute \( a=\frac{5}{6},b=-\frac{3}{4},c=0.4 \) into the expression \( \frac{a}{b}+\frac{a}{c} \). Evaluate the expression by following steps: - step0: Evaluate: \(\frac{a}{b}+\frac{a}{c}\) - step1: Substitute: \(\frac{\frac{5}{6}}{-\frac{3}{4}}+\frac{\frac{5}{6}}{0.4}\) - step2: Divide the terms: \(-\frac{10}{9}+\frac{\frac{5}{6}}{0.4}\) - step3: Divide the numbers: \(-\frac{10}{9}+\frac{25}{12}\) - step4: Reduce fractions to a common denominator: \(-\frac{10\times 4}{9\times 4}+\frac{25\times 3}{12\times 3}\) - step5: Multiply the numbers: \(-\frac{10\times 4}{36}+\frac{25\times 3}{12\times 3}\) - step6: Multiply the numbers: \(-\frac{10\times 4}{36}+\frac{25\times 3}{36}\) - step7: Transform the expression: \(\frac{-10\times 4+25\times 3}{36}\) - step8: Multiply the numbers: \(\frac{-40+25\times 3}{36}\) - step9: Multiply the numbers: \(\frac{-40+75}{36}\) - step10: Add the numbers: \(\frac{35}{36}\) Substitute \( a=\frac{5}{6},b=-\frac{3}{4},c=0.4,d=\frac{1}{2} \) into the expression \( a+b+c+d \). Evaluate the expression by following steps: - step0: Evaluate: \(a+b+c+d\) - step1: Substitute: \(\frac{5}{6}-\frac{3}{4}+0.4+\frac{1}{2}\) - step2: Rewrite the expression: \(\frac{5}{6}-\frac{3}{4}+\frac{2}{5}+\frac{1}{2}\) - step3: Reduce fractions to a common denominator: \(\frac{5\times 2\times 5}{6\times 2\times 5}-\frac{3\times 3\times 5}{4\times 3\times 5}+\frac{2\times 2\times 3\times 2}{5\times 2\times 3\times 2}+\frac{30}{2\times 30}\) - step4: Multiply the terms: \(\frac{5\times 2\times 5}{60}-\frac{3\times 3\times 5}{4\times 3\times 5}+\frac{2\times 2\times 3\times 2}{5\times 2\times 3\times 2}+\frac{30}{2\times 30}\) - step5: Multiply the terms: \(\frac{5\times 2\times 5}{60}-\frac{3\times 3\times 5}{60}+\frac{2\times 2\times 3\times 2}{5\times 2\times 3\times 2}+\frac{30}{2\times 30}\) - step6: Multiply the terms: \(\frac{5\times 2\times 5}{60}-\frac{3\times 3\times 5}{60}+\frac{2\times 2\times 3\times 2}{60}+\frac{30}{2\times 30}\) - step7: Multiply the numbers: \(\frac{5\times 2\times 5}{60}-\frac{3\times 3\times 5}{60}+\frac{2\times 2\times 3\times 2}{60}+\frac{30}{60}\) - step8: Transform the expression: \(\frac{5\times 2\times 5-3\times 3\times 5+2\times 2\times 3\times 2+30}{60}\) - step9: Multiply the terms: \(\frac{50-3\times 3\times 5+2\times 2\times 3\times 2+30}{60}\) - step10: Multiply the terms: \(\frac{50-45+2\times 2\times 3\times 2+30}{60}\) - step11: Multiply the terms: \(\frac{50-45+24+30}{60}\) - step12: Calculate: \(\frac{59}{60}\) Substitute \( a=\frac{5}{6},b=-\frac{3}{4},c=0.4 \) into the expression \( c=a+\frac{b}{a} \). Evaluate the expression by following steps: - step0: Evaluate: \(c=a+\frac{b}{a}\) - step1: Substitute: \(0.4=\frac{5}{6}+\frac{-\frac{3}{4}}{\frac{5}{6}}\) - step2: Divide the terms: \(0.4=\frac{5}{6}-\frac{9}{10}\) - step3: Subtract the numbers: \(0.4=-\frac{1}{15}\) - step4: Calculate: \(0.4=-0.0\dot{6}\) - step5: Check the equality: \(\textrm{false}\) Substitute \( a=\frac{5}{6},b=-\frac{3}{4},c=0.4 \) into the expression \( a+\frac{a}{b}-c \). Evaluate the expression by following steps: - step0: Evaluate: \(a+\frac{a}{b}-c\) - step1: Substitute: \(\frac{5}{6}+\frac{\frac{5}{6}}{-\frac{3}{4}}-0.4\) - step2: Divide the terms: \(\frac{5}{6}-\frac{10}{9}-0.4\) - step3: Rewrite the expression: \(\frac{5}{6}-\frac{10}{9}-\frac{2}{5}\) - step4: Reduce fractions to a common denominator: \(\frac{5\times 3\times 5}{6\times 3\times 5}-\frac{10\times 2\times 5}{9\times 2\times 5}-\frac{2\times 3\times 2\times 3}{5\times 3\times 2\times 3}\) - step5: Multiply the terms: \(\frac{5\times 3\times 5}{90}-\frac{10\times 2\times 5}{9\times 2\times 5}-\frac{2\times 3\times 2\times 3}{5\times 3\times 2\times 3}\) - step6: Multiply the terms: \(\frac{5\times 3\times 5}{90}-\frac{10\times 2\times 5}{90}-\frac{2\times 3\times 2\times 3}{5\times 3\times 2\times 3}\) - step7: Multiply the terms: \(\frac{5\times 3\times 5}{90}-\frac{10\times 2\times 5}{90}-\frac{2\times 3\times 2\times 3}{90}\) - step8: Transform the expression: \(\frac{5\times 3\times 5-10\times 2\times 5-2\times 3\times 2\times 3}{90}\) - step9: Multiply the terms: \(\frac{75-10\times 2\times 5-2\times 3\times 2\times 3}{90}\) - step10: Multiply the terms: \(\frac{75-100-2\times 3\times 2\times 3}{90}\) - step11: Multiply the terms: \(\frac{75-100-36}{90}\) - step12: Subtract the numbers: \(\frac{-61}{90}\) - step13: Rewrite the fraction: \(-\frac{61}{90}\) Aquí están los resultados de las expresiones evaluadas: 1. \( \frac{h}{c}+a-d \) - Resultado: \( \frac{15h+2}{6} \) 2. \( a+b+c+d \) - Resultado: \( \frac{59}{60} \) o \( 0.98\dot{3} \) 3. \( c=a+\frac{b}{a} \) - Resultado: \( \text{false} \) (esto indica que la ecuación no se cumple con los valores dados) 4. \( \frac{a}{b}+\frac{a}{c} \) - Resultado: \( \frac{35}{36} \) o \( 0.97\dot{2} \) 5. \( b^{2}-d \) - Resultado: \( \frac{1}{16} \) o \( 0.0625 \) 6. \( a+\frac{a}{b}-c \) - Resultado: \( -\frac{61}{90} \) o \( -0.6\dot{7} \) 7. \( a^{2}+b \) - Resultado: \( -\frac{1}{18} \) o \( -0.0\dot{5} \) 8. \( b-c+d \) - Resultado: \( -\frac{13}{20} \) o \( -0.65 \) 9. \( \frac{c}{a}-b^{2} \) - Resultado: \( -\frac{33}{400} \) o \( -0.0825 \) Si necesitas más detalles sobre algún cálculo específico, házmelo saber.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Let’s calculate each expression step by step. Given: \( a = \frac{5}{6} \) \( b = -\frac{3}{4} \) \( c \equiv 0.4 \) \( d = \frac{1}{2} \) 1. **\( \frac{h}{c} + a - d \)**: Without the value of \( h \), we can’t evaluate this expression fully. 2. **\( a + b + c + d \)**: \( = \frac{5}{6} - \frac{3}{4} + 0.4 + \frac{1}{2} \) Converting all terms to a common denominator (12): \( = \frac{10}{12} - \frac{9}{12} + \frac{4.8}{12} + \frac{6}{12} = \frac{10 + 4.8 - 9 + 6}{12} = \frac{11.8}{12} \approx 0.9833 \) 3. **\( c = a + \frac{b}{a} \)**: \( 0.4 = \frac{5}{6} + \frac{-\frac{3}{4}}{\frac{5}{6}} = \frac{5}{6} - \frac{18}{30} \) This means checking if \( c \) holds true. 4. **\( \frac{a}{b} + \frac{a}{c} \)**: \( \frac{\frac{5}{6}}{-\frac{3}{4}} + \frac{\frac{5}{6}}{0.4} = \frac{-20}{18} + \frac{5}{2.4} = -\frac{10}{9} + \frac{25}{12} \) Converting to a common denominator (36): \( = -\frac{40}{36} + \frac{75}{36} = \frac{35}{36} \) 5. **\( b^{2} - d \)**: \( = \left(-\frac{3}{4}\right)^{2} - \frac{1}{2} = \frac{9}{16} - \frac{8}{16} = \frac{1}{16} \) 6. **\( a + \frac{a}{b} - c \)**: \( = \frac{5}{6} + \frac{\frac{5}{6}}{-\frac{3}{4}} - 0.4 = \frac{5}{6} - \frac{10}{9} - 0.4 \) Converting to a common denominator (18): \( = \frac{15}{18} - \frac{20}{18} - \frac{7.2}{18} = \frac{15 - 20 - 7.2}{18} = -\frac{12.2}{18} \) 7. **\( a^{2} + b \)**: \( = \left(\frac{5}{6}\right)^{2} - \frac{3}{4} = \frac{25}{36} - \frac{27}{36} = -\frac{2}{36} = -\frac{1}{18} \) 8. **\( b - c + d \)**: \( = -\frac{3}{4} - 0.4 + \frac{1}{2} \) Converting everything to a common denominator: \( = -\frac{3}{4} - \frac{2}{5} + \frac{3}{6} = -\frac{45}{60} - \frac{24}{60} + \frac{30}{60} = -\frac{39}{60} \) 9. **\( \frac{c}{a} - b^{2} \)**: \( = \frac{0.4}{\frac{5}{6}} - \left(-\frac{3}{4}\right)^{2} = \frac{0.4 \times 6}{5} - \frac{9}{16} \) \( = \frac{2.4}{5} - \frac{9}{16} \) Note: These final answers can be rounded or expressed as decimals based on the preferred precision.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy