Answer
Here are the solutions to the inequalities:
1. \( -5 < x < 9 \)
2. \( x \leq -3 \) or \( x \geq 2 \)
3. \( x < -4 \) or \( x > 1 \)
4. \( -\frac{3}{4} \leq x \leq \frac{3}{4} \)
5. \( x \leq -\frac{3}{2} \) or \( x \geq 2 \)
6. All real numbers (\( x \in \mathbb{R} \))
7. \( x \leq \frac{-2\sqrt{3}+3}{2} \) or \( x \geq \frac{2\sqrt{3}+3}{2} \)
8. All real numbers (\( x \in \mathbb{R} \))
9. \( x \neq -1 \)
Graphs of these solution sets can be plotted on a number line to visualize the intervals where each inequality holds true.
Solution
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(x^{2}+2x+1>0\)
- step1: Rewrite the expression:
\(x^{2}+2x+1=0\)
- step2: Factor the expression:
\(\left(x+1\right)^{2}=0\)
- step3: Simplify the expression:
\(x+1=0\)
- step4: Move the constant to the right side:
\(x=0-1\)
- step5: Remove 0:
\(x=-1\)
- step6: Determine the test intervals:
\(\begin{align}&x<-1\\&x>-1\end{align}\)
- step7: Choose a value:
\(\begin{align}&x_{1}=-2\\&x_{2}=0\end{align}\)
- step8: Test the chosen value:
\(\begin{align}&x<-1\textrm{ }\textrm{is the solution}\\&x>-1\textrm{ }\textrm{is the solution}\end{align}\)
- step9: The final solution is \(x\neq -1:\)
\(x\neq -1\)
Solve the equation \( x-x^{2}-1<0 \).
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(x-x^{2}-1<0\)
- step1: Rewrite the expression:
\(x-x^{2}-1=0\)
- step2: Add or subtract both sides:
\(x-x^{2}=1\)
- step3: Divide both sides:
\(\frac{x-x^{2}}{-1}=\frac{1}{-1}\)
- step4: Evaluate:
\(-x+x^{2}=-1\)
- step5: Add the same value to both sides:
\(-x+x^{2}+\frac{1}{4}=-1+\frac{1}{4}\)
- step6: Simplify the expression:
\(\left(x-\frac{1}{2}\right)^{2}=-\frac{3}{4}\)
- step7: The statement is false for any value of \(x:\)
\(x \notin \mathbb{R}\)
- step8: Choose a value:
\(x=0\)
- step9: Test the chosen value:
\(x \in \mathbb{R}\)
Solve the equation \( 16x^{2}-9\leq0 \).
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(16x^{2}-9\leq 0\)
- step1: Rewrite the expression:
\(16x^{2}-9=0\)
- step2: Move the constant to the right side:
\(16x^{2}=0+9\)
- step3: Remove 0:
\(16x^{2}=9\)
- step4: Divide both sides:
\(\frac{16x^{2}}{16}=\frac{9}{16}\)
- step5: Divide the numbers:
\(x^{2}=\frac{9}{16}\)
- step6: Simplify the expression:
\(x=\pm \sqrt{\frac{9}{16}}\)
- step7: Simplify:
\(x=\pm \frac{3}{4}\)
- step8: Separate into possible cases:
\(\begin{align}&x=\frac{3}{4}\\&x=-\frac{3}{4}\end{align}\)
- step9: Determine the test intervals:
\(\begin{align}&x<-\frac{3}{4}\\&-\frac{3}{4}\frac{3}{4}\end{align}\)
- step10: Choose a value:
\(\begin{align}&x_{1}=-2\\&x_{2}=0\\&x_{3}=2\end{align}\)
- step11: Test the chosen value:
\(\begin{align}&x<-\frac{3}{4}\textrm{ }\textrm{is not a solution}\\&-\frac{3}{4}\frac{3}{4}\textrm{ }\textrm{is not a solution}\end{align}\)
- step12: Include the critical value:
\(\begin{align}&-\frac{3}{4}\leq x\leq \frac{3}{4}\textrm{ }\textrm{is the solution}\end{align}\)
- step13: The final solution is \(-\frac{3}{4}\leq x\leq \frac{3}{4}:\)
\(-\frac{3}{4}\leq x\leq \frac{3}{4}\)
Solve the equation \( 6-x^{2}-x\leq0 \).
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(6-x^{2}-x\leq 0\)
- step1: Rewrite the expression:
\(6-x^{2}-x=0\)
- step2: Factor the expression:
\(\left(2-x\right)\left(3+x\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&2-x=0\\&3+x=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=2\\&x=-3\end{align}\)
- step5: Determine the test intervals:
\(\begin{align}&x<-3\\&-32\end{align}\)
- step6: Choose a value:
\(\begin{align}&x_{1}=-4\\&x_{2}=-1\\&x_{3}=3\end{align}\)
- step7: Test the chosen value:
\(\begin{align}&x<-3\textrm{ }\textrm{is the solution}\\&-32\textrm{ }\textrm{is the solution}\end{align}\)
- step8: Include the critical value:
\(\begin{align}&x\leq -3\textrm{ }\textrm{is the solution}\\&x\geq 2\textrm{ }\textrm{is the solution}\end{align}\)
- step9: The final solution is \(x \in \left(-\infty,-3\right]\cup \left[2,+\infty\right):\)
\(x \in \left(-\infty,-3\right]\cup \left[2,+\infty\right)\)
Solve the equation \( 3x-1-3+x^{2}>0 \).
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(3x-1-3+x^{2}>0\)
- step1: Subtract the numbers:
\(3x-4+x^{2}>0\)
- step2: Rewrite the expression:
\(3x-4+x^{2}=0\)
- step3: Factor the expression:
\(\left(-1+x\right)\left(4+x\right)=0\)
- step4: Separate into possible cases:
\(\begin{align}&-1+x=0\\&4+x=0\end{align}\)
- step5: Solve the equation:
\(\begin{align}&x=1\\&x=-4\end{align}\)
- step6: Determine the test intervals:
\(\begin{align}&x<-4\\&-41\end{align}\)
- step7: Choose a value:
\(\begin{align}&x_{1}=-5\\&x_{2}=-2\\&x_{3}=2\end{align}\)
- step8: Test the chosen value:
\(\begin{align}&x<-4\textrm{ }\textrm{is the solution}\\&-41\textrm{ }\textrm{is the solution}\end{align}\)
- step9: The final solution is \(x \in \left(-\infty,-4\right)\cup \left(1,+\infty\right):\)
\(x \in \left(-\infty,-4\right)\cup \left(1,+\infty\right)\)
Solve the equation \( x^{2}-4x-45<0 \).
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(x^{2}-4x-45<0\)
- step1: Rewrite the expression:
\(x^{2}-4x-45=0\)
- step2: Factor the expression:
\(\left(x-9\right)\left(x+5\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&x-9=0\\&x+5=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=9\\&x=-5\end{align}\)
- step5: Determine the test intervals:
\(\begin{align}&x<-5\\&-59\end{align}\)
- step6: Choose a value:
\(\begin{align}&x_{1}=-6\\&x_{2}=2\\&x_{3}=10\end{align}\)
- step7: Test the chosen value:
\(\begin{align}&x<-5\textrm{ }\textrm{is not a solution}\\&-59\textrm{ }\textrm{is not a solution}\end{align}\)
- step8: The final solution is \(-50 \).
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(x^{2}-6x+7>0\)
- step1: Rewrite the expression:
\(x^{2}-6x+7=0\)
- step2: Add or subtract both sides:
\(x^{2}-6x=-7\)
- step3: Add the same value to both sides:
\(x^{2}-6x+9=-7+9\)
- step4: Simplify the expression:
\(\left(x-3\right)^{2}=2\)
- step5: Simplify the expression:
\(x-3=\pm \sqrt{2}\)
- step6: Separate into possible cases:
\(\begin{align}&x-3=\sqrt{2}\\&x-3=-\sqrt{2}\end{align}\)
- step7: Move the constant to the right side:
\(\begin{align}&x=\sqrt{2}+3\\&x=-\sqrt{2}+3\end{align}\)
- step8: Determine the test intervals:
\(\begin{align}&x<-\sqrt{2}+3\\&-\sqrt{2}+3\sqrt{2}+3\end{align}\)
- step9: Choose a value:
\(\begin{align}&x_{1}=1\\&x_{2}=3\\&x_{3}=5\end{align}\)
- step10: Test the chosen value:
\(\begin{align}&x<-\sqrt{2}+3\textrm{ }\textrm{is the solution}\\&-\sqrt{2}+3\sqrt{2}+3\textrm{ }\textrm{is the solution}\end{align}\)
- step11: The final solution is \(x \in \left(-\infty,-\sqrt{2}+3\right)\cup \left(\sqrt{2}+3,+\infty\right):\)
\(x \in \left(-\infty,-\sqrt{2}+3\right)\cup \left(\sqrt{2}+3,+\infty\right)\)
Solve the equation \( x+6-2x^{2}\leq0 \).
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(x+6-2x^{2}\leq 0\)
- step1: Rewrite the expression:
\(x+6-2x^{2}=0\)
- step2: Factor the expression:
\(\left(2-x\right)\left(3+2x\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&2-x=0\\&3+2x=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=2\\&x=-\frac{3}{2}\end{align}\)
- step5: Determine the test intervals:
\(\begin{align}&x<-\frac{3}{2}\\&-\frac{3}{2}2\end{align}\)
- step6: Choose a value:
\(\begin{align}&x_{1}=-3\\&x_{2}=0\\&x_{3}=3\end{align}\)
- step7: Test the chosen value:
\(\begin{align}&x<-\frac{3}{2}\textrm{ }\textrm{is the solution}\\&-\frac{3}{2}2\textrm{ }\textrm{is the solution}\end{align}\)
- step8: Include the critical value:
\(\begin{align}&x\leq -\frac{3}{2}\textrm{ }\textrm{is the solution}\\&x\geq 2\textrm{ }\textrm{is the solution}\end{align}\)
- step9: The final solution is \(x \in \left(-\infty,-\frac{3}{2}\right]\cup \left[2,+\infty\right):\)
\(x \in \left(-\infty,-\frac{3}{2}\right]\cup \left[2,+\infty\right)\)
Solve the equation \( 12x+3-4x^{2}\leq0 \).
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(12x+3-4x^{2}\leq 0\)
- step1: Rewrite the expression:
\(12x+3-4x^{2}=0\)
- step2: Add or subtract both sides:
\(12x-4x^{2}=-3\)
- step3: Divide both sides:
\(\frac{12x-4x^{2}}{-4}=\frac{-3}{-4}\)
- step4: Evaluate:
\(-3x+x^{2}=\frac{3}{4}\)
- step5: Add the same value to both sides:
\(-3x+x^{2}+\frac{9}{4}=\frac{3}{4}+\frac{9}{4}\)
- step6: Simplify the expression:
\(\left(x-\frac{3}{2}\right)^{2}=3\)
- step7: Simplify the expression:
\(x-\frac{3}{2}=\pm \sqrt{3}\)
- step8: Separate into possible cases:
\(\begin{align}&x-\frac{3}{2}=\sqrt{3}\\&x-\frac{3}{2}=-\sqrt{3}\end{align}\)
- step9: Solve the equation:
\(\begin{align}&x=\frac{2\sqrt{3}+3}{2}\\&x=\frac{-2\sqrt{3}+3}{2}\end{align}\)
- step10: Determine the test intervals:
\(\begin{align}&x<\frac{-2\sqrt{3}+3}{2}\\&\frac{-2\sqrt{3}+3}{2}\frac{2\sqrt{3}+3}{2}\end{align}\)
- step11: Choose a value:
\(\begin{align}&x_{1}=-1\\&x_{2}=2\\&x_{3}=4\end{align}\)
- step12: Test the chosen value:
\(\begin{align}&x<\frac{-2\sqrt{3}+3}{2}\textrm{ }\textrm{is the solution}\\&\frac{-2\sqrt{3}+3}{2}\frac{2\sqrt{3}+3}{2}\textrm{ }\textrm{is the solution}\end{align}\)
- step13: Include the critical value:
\(\begin{align}&x\leq \frac{-2\sqrt{3}+3}{2}\textrm{ }\textrm{is the solution}\\&x\geq \frac{2\sqrt{3}+3}{2}\textrm{ }\textrm{is the solution}\end{align}\)
- step14: The final solution is \(x \in \left(-\infty,\frac{-2\sqrt{3}+3}{2}\right]\cup \left[\frac{2\sqrt{3}+3}{2},+\infty\right):\)
\(x \in \left(-\infty,\frac{-2\sqrt{3}+3}{2}\right]\cup \left[\frac{2\sqrt{3}+3}{2},+\infty\right)\)
Let's solve and graph the solution sets for each inequality step by step.
### 15. \( x^{2} < 4x + 45 \)
Rearranging gives:
\[
x^{2} - 4x - 45 < 0
\]
Factoring:
\[
(x - 9)(x + 5) < 0
\]
The critical points are \( x = -5 \) and \( x = 9 \). Testing intervals:
- For \( x < -5 \): Choose \( x = -6 \) → Positive
- For \( -5 < x < 9 \): Choose \( x = 0 \) → Negative
- For \( x > 9 \): Choose \( x = 10 \) → Positive
Thus, the solution is:
\[
-5 < x < 9
\]
### 16. \( 6 - x^{2} \leq x \)
Rearranging gives:
\[
-x^{2} - x + 6 \leq 0 \quad \Rightarrow \quad x^{2} + x - 6 \geq 0
\]
Factoring:
\[
(x - 2)(x + 3) \geq 0
\]
The critical points are \( x = -3 \) and \( x = 2 \). Testing intervals:
- For \( x < -3 \): Positive
- For \( -3 < x < 2 \): Negative
- For \( x > 2 \): Positive
Thus, the solution is:
\[
x \in (-\infty, -3] \cup [2, +\infty)
\]
### 17. \( 3x - 1 > 3 - x^{2} \)
Rearranging gives:
\[
x^{2} + 3x - 4 > 0
\]
Factoring:
\[
(x - 1)(x + 4) > 0
\]
The critical points are \( x = -4 \) and \( x = 1 \). Testing intervals:
- For \( x < -4 \): Positive
- For \( -4 < x < 1 \): Negative
- For \( x > 1 \): Positive
Thus, the solution is:
\[
x \in (-\infty, -4) \cup (1, +\infty)
\]
### 18. \( 16x^{2} - 9 \leq 0 \)
Rearranging gives:
\[
(4x - 3)(4x + 3) \leq 0
\]
The critical points are \( x = -\frac{3}{4} \) and \( x = \frac{3}{4} \). Testing intervals:
- For \( x < -\frac{3}{4} \): Positive
- For \( -\frac{3}{4} < x < \frac{3}{4} \): Negative
- For \( x > \frac{3}{4} \): Positive
Thus, the solution is:
\[
-\frac{3}{4} \leq x \leq \frac{3}{4}
\]
### 19. \( x + 6 \leq 2x^{2} \)
Rearranging gives:
\[
2x^{2} - x - 6 \geq 0
\]
Factoring:
\[
(2x + 3)(x - 2) \geq 0
\]
The critical points are \( x = -\frac{3}{2} \) and \( x = 2 \). Testing intervals:
- For \( x < -\frac{3}{2} \): Positive
- For \( -\frac{3}{2} < x < 2 \): Negative
- For \( x > 2 \): Positive
Thus, the solution is:
\[
x \in (-\infty, -\frac{3}{2}] \cup [2, +\infty)
\]
### 20. \( x^{2} - 6x + 7 > 0 \)
The discriminant is negative:
\[
(-6)^{2} - 4 \cdot 1 \cdot 7 = 36 - 28 = 8 > 0
\]
Thus, the quadratic does not cross the x-axis and opens upwards. Therefore, it is always positive:
\[
x \in \mathbb{R}
\]
### 21. \( 12x + 3 \leq 4x^{2} \)
Rearranging gives:
\[
4x^{2} - 12x - 3 \geq 0
\]
Using the quadratic formula:
\[
x = \frac{12 \pm \sqrt{144 + 48}}{8} = \frac{12 \pm 6\sqrt{3}}{8} = \frac{3 \pm \frac{3\sqrt{3}}{2}}{2}
\]
Thus, the solution is:
\[
x \in (-\infty, \frac{-2\sqrt{3}+3}{2}] \cup [\frac{2\sqrt{3}+3}{2}, +\infty)
\]
### 22. \( x - x^{2} < 1 \)
Rearranging gives:
\[
-x^{2} + x - 1 < 0 \quad \Rightarrow \quad x^{2} - x + 1 > 0
\]
The discriminant is negative:
\[
(-1)^{2} - 4 \cdot 1 \cdot 1 = 1 - 4 = -3 < 0
\]
Thus, the quadratic is always positive:
\[
x \in \mathbb{R}
\]
### 23. \( x^{2} + 2x > -1 \)
Rearranging gives:
\[
x^{2} + 2x + 1 > 0 \quad \Rightarrow \quad (x + 1)^{2} > 0
\]
This is true for all \( x \neq -1 \):
\[
x \neq -1
\]
### Summary of Solutions
1. \( -5 < x < 9 \)
2. \( x \in (-\infty, -3] \cup [2, +\infty) \)
3. \( x \in (-\infty, -4) \cup (1, +\infty) \)
4. \( -\frac{3}{4} \leq x \leq \frac{3}{4} \)
5. \( x \in (-\infty, -\frac{3}{2}] \cup [2, +\infty) \)
6. \( x \in \mathbb{R} \)
7. \( x \in (-\infty, \frac{-2\sqrt{3}+3}{2}] \cup
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution