Answer
a) \( 3x^{2} \)
b) \( -10x \)
c) \( -x^{4}+4x^{3} \)
d) \( \frac{12x^{2}-1}{12x} \)
e) \( \frac{15-24x^{4}+8x^{5}}{24x^{2}} \)
f) \( \frac{39x^{2}-2}{9x} \)
Solution
Simplify the expression by following steps:
- step0: Solution:
\(-x^{4}-2x^{3}+6x^{3}\)
- step1: Add the terms:
\(-x^{4}+4x^{3}\)
Calculate or simplify the expression \( 4 x-2 \div 9 x+x \div 3 \).
Simplify the expression by following steps:
- step0: Solution:
\(4x-2\div \left(9x\right)+x\div 3\)
- step1: Rewrite the expression:
\(4x-\frac{2}{9x}+x\div 3\)
- step2: Rewrite the expression:
\(4x-\frac{2}{9x}+\frac{x}{3}\)
- step3: Reduce fractions to a common denominator:
\(\frac{4x\times 9x}{9x}-\frac{2}{9x}+\frac{x\times 3x}{3\times 3x}\)
- step4: Multiply the numbers:
\(\frac{4x\times 9x}{9x}-\frac{2}{9x}+\frac{x\times 3x}{9x}\)
- step5: Transform the expression:
\(\frac{4x\times 9x-2+x\times 3x}{9x}\)
- step6: Multiply the terms:
\(\frac{36x^{2}-2+x\times 3x}{9x}\)
- step7: Multiply the terms:
\(\frac{36x^{2}-2+3x^{2}}{9x}\)
- step8: Add the terms:
\(\frac{39x^{2}-2}{9x}\)
Calculate or simplify the expression \( 6 x^{2}-4 x^{2}+x^{2} \).
Simplify the expression by following steps:
- step0: Solution:
\(6x^{2}-4x^{2}+x^{2}\)
- step1: Collect like terms:
\(\left(6-4+1\right)x^{2}\)
- step2: Calculate:
\(3x^{2}\)
Calculate or simplify the expression \( x-3 \div 4 x+2 \div 3 x \).
Simplify the expression by following steps:
- step0: Solution:
\(x-3\div \left(4x\right)+2\div \left(3x\right)\)
- step1: Rewrite the expression:
\(x-\frac{3}{4x}+2\div \left(3x\right)\)
- step2: Rewrite the expression:
\(x-\frac{3}{4x}+\frac{2}{3x}\)
- step3: Reduce fractions to a common denominator:
\(\frac{x\times 4\times 3x}{4\times 3x}-\frac{3\times 3}{4x\times 3}+\frac{2\times 4}{3x\times 4}\)
- step4: Multiply the numbers:
\(\frac{x\times 4\times 3x}{12x}-\frac{3\times 3}{4x\times 3}+\frac{2\times 4}{3x\times 4}\)
- step5: Multiply the numbers:
\(\frac{x\times 4\times 3x}{12x}-\frac{3\times 3}{12x}+\frac{2\times 4}{3x\times 4}\)
- step6: Multiply the numbers:
\(\frac{x\times 4\times 3x}{12x}-\frac{3\times 3}{12x}+\frac{2\times 4}{12x}\)
- step7: Transform the expression:
\(\frac{x\times 4\times 3x-3\times 3+2\times 4}{12x}\)
- step8: Multiply the terms:
\(\frac{12x^{2}-3\times 3+2\times 4}{12x}\)
- step9: Multiply the numbers:
\(\frac{12x^{2}-9+2\times 4}{12x}\)
- step10: Multiply the numbers:
\(\frac{12x^{2}-9+8}{12x}\)
- step11: Add the numbers:
\(\frac{12x^{2}-1}{12x}\)
Calculate or simplify the expression \( -3 x+8 x-15 x \).
Simplify the expression by following steps:
- step0: Solution:
\(-3x+8x-15x\)
- step1: Collect like terms:
\(\left(-3+8-15\right)x\)
- step2: Calculate:
\(-10x\)
Calculate or simplify the expression \( 5 \div 8 x^{2}-x^{2}+x^{3} \div 3 \).
Simplify the expression by following steps:
- step0: Solution:
\(5\div \left(8x^{2}\right)-x^{2}+x^{3}\div 3\)
- step1: Rewrite the expression:
\(\frac{5}{8x^{2}}-x^{2}+x^{3}\div 3\)
- step2: Rewrite the expression:
\(\frac{5}{8x^{2}}-x^{2}+\frac{x^{3}}{3}\)
- step3: Reduce fractions to a common denominator:
\(\frac{5\times 3}{8x^{2}\times 3}-\frac{x^{2}\times 8\times 3x^{2}}{8\times 3x^{2}}+\frac{x^{3}\times 8x^{2}}{3\times 8x^{2}}\)
- step4: Multiply the numbers:
\(\frac{5\times 3}{24x^{2}}-\frac{x^{2}\times 8\times 3x^{2}}{8\times 3x^{2}}+\frac{x^{3}\times 8x^{2}}{3\times 8x^{2}}\)
- step5: Multiply the numbers:
\(\frac{5\times 3}{24x^{2}}-\frac{x^{2}\times 8\times 3x^{2}}{24x^{2}}+\frac{x^{3}\times 8x^{2}}{3\times 8x^{2}}\)
- step6: Multiply the numbers:
\(\frac{5\times 3}{24x^{2}}-\frac{x^{2}\times 8\times 3x^{2}}{24x^{2}}+\frac{x^{3}\times 8x^{2}}{24x^{2}}\)
- step7: Transform the expression:
\(\frac{5\times 3-x^{2}\times 8\times 3x^{2}+x^{3}\times 8x^{2}}{24x^{2}}\)
- step8: Multiply the numbers:
\(\frac{15-x^{2}\times 8\times 3x^{2}+x^{3}\times 8x^{2}}{24x^{2}}\)
- step9: Multiply the terms:
\(\frac{15-24x^{4}+x^{3}\times 8x^{2}}{24x^{2}}\)
- step10: Multiply the terms:
\(\frac{15-24x^{4}+8x^{5}}{24x^{2}}\)
Aquí están las soluciones simplificadas para cada una de las expresiones:
a) \( 6 x^{2}-4 x^{2}+x^{2} \) se simplifica a:
\[
3x^{2}
\]
b) \( -3 x+8 x-15 x \) se simplifica a:
\[
-10x
\]
c) \( -x^{4}-2 x^{3}+6 x^{3} \) se simplifica a:
\[
-x^{4}+4x^{3}
\]
d) \( x-3 \div 4 x+2 \div 3 x \) se simplifica a:
\[
\frac{12x^{2}-1}{12x}
\]
e) \( 5 \div 8 x^{2}-x^{2}+x^{3} \div 3 \) se simplifica a:
\[
\frac{15-24x^{4}+8x^{5}}{24x^{2}}
\]
f) \( 4 x-2 \div 9 x+x \div 3 \) se simplifica a:
\[
\frac{39x^{2}-2}{9x}
\]
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution