Question
upstudy study bank question image url

a) \( 6 x^{2}-4 x^{2}+x^{2} \) b) \( -3 x+8 x-15 x \) c) \( -x^{4}-2 x^{3}+6 x^{3} \) d) \( x-3 \div 4 x+2 \div 3 x \) e) \( 5 \div 8 x^{2}-x^{2}+x^{3} \div 3 \) f) \( 4 x-2 \div 9 x+x \div 3 \)

Ask by Gordon Maxwell. in Colombia
Feb 18,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

a) \( 3x^{2} \) b) \( -10x \) c) \( -x^{4}+4x^{3} \) d) \( \frac{12x^{2}-1}{12x} \) e) \( \frac{15-24x^{4}+8x^{5}}{24x^{2}} \) f) \( \frac{39x^{2}-2}{9x} \)

Solution

Simplify the expression by following steps: - step0: Solution: \(-x^{4}-2x^{3}+6x^{3}\) - step1: Add the terms: \(-x^{4}+4x^{3}\) Calculate or simplify the expression \( 4 x-2 \div 9 x+x \div 3 \). Simplify the expression by following steps: - step0: Solution: \(4x-2\div \left(9x\right)+x\div 3\) - step1: Rewrite the expression: \(4x-\frac{2}{9x}+x\div 3\) - step2: Rewrite the expression: \(4x-\frac{2}{9x}+\frac{x}{3}\) - step3: Reduce fractions to a common denominator: \(\frac{4x\times 9x}{9x}-\frac{2}{9x}+\frac{x\times 3x}{3\times 3x}\) - step4: Multiply the numbers: \(\frac{4x\times 9x}{9x}-\frac{2}{9x}+\frac{x\times 3x}{9x}\) - step5: Transform the expression: \(\frac{4x\times 9x-2+x\times 3x}{9x}\) - step6: Multiply the terms: \(\frac{36x^{2}-2+x\times 3x}{9x}\) - step7: Multiply the terms: \(\frac{36x^{2}-2+3x^{2}}{9x}\) - step8: Add the terms: \(\frac{39x^{2}-2}{9x}\) Calculate or simplify the expression \( 6 x^{2}-4 x^{2}+x^{2} \). Simplify the expression by following steps: - step0: Solution: \(6x^{2}-4x^{2}+x^{2}\) - step1: Collect like terms: \(\left(6-4+1\right)x^{2}\) - step2: Calculate: \(3x^{2}\) Calculate or simplify the expression \( x-3 \div 4 x+2 \div 3 x \). Simplify the expression by following steps: - step0: Solution: \(x-3\div \left(4x\right)+2\div \left(3x\right)\) - step1: Rewrite the expression: \(x-\frac{3}{4x}+2\div \left(3x\right)\) - step2: Rewrite the expression: \(x-\frac{3}{4x}+\frac{2}{3x}\) - step3: Reduce fractions to a common denominator: \(\frac{x\times 4\times 3x}{4\times 3x}-\frac{3\times 3}{4x\times 3}+\frac{2\times 4}{3x\times 4}\) - step4: Multiply the numbers: \(\frac{x\times 4\times 3x}{12x}-\frac{3\times 3}{4x\times 3}+\frac{2\times 4}{3x\times 4}\) - step5: Multiply the numbers: \(\frac{x\times 4\times 3x}{12x}-\frac{3\times 3}{12x}+\frac{2\times 4}{3x\times 4}\) - step6: Multiply the numbers: \(\frac{x\times 4\times 3x}{12x}-\frac{3\times 3}{12x}+\frac{2\times 4}{12x}\) - step7: Transform the expression: \(\frac{x\times 4\times 3x-3\times 3+2\times 4}{12x}\) - step8: Multiply the terms: \(\frac{12x^{2}-3\times 3+2\times 4}{12x}\) - step9: Multiply the numbers: \(\frac{12x^{2}-9+2\times 4}{12x}\) - step10: Multiply the numbers: \(\frac{12x^{2}-9+8}{12x}\) - step11: Add the numbers: \(\frac{12x^{2}-1}{12x}\) Calculate or simplify the expression \( -3 x+8 x-15 x \). Simplify the expression by following steps: - step0: Solution: \(-3x+8x-15x\) - step1: Collect like terms: \(\left(-3+8-15\right)x\) - step2: Calculate: \(-10x\) Calculate or simplify the expression \( 5 \div 8 x^{2}-x^{2}+x^{3} \div 3 \). Simplify the expression by following steps: - step0: Solution: \(5\div \left(8x^{2}\right)-x^{2}+x^{3}\div 3\) - step1: Rewrite the expression: \(\frac{5}{8x^{2}}-x^{2}+x^{3}\div 3\) - step2: Rewrite the expression: \(\frac{5}{8x^{2}}-x^{2}+\frac{x^{3}}{3}\) - step3: Reduce fractions to a common denominator: \(\frac{5\times 3}{8x^{2}\times 3}-\frac{x^{2}\times 8\times 3x^{2}}{8\times 3x^{2}}+\frac{x^{3}\times 8x^{2}}{3\times 8x^{2}}\) - step4: Multiply the numbers: \(\frac{5\times 3}{24x^{2}}-\frac{x^{2}\times 8\times 3x^{2}}{8\times 3x^{2}}+\frac{x^{3}\times 8x^{2}}{3\times 8x^{2}}\) - step5: Multiply the numbers: \(\frac{5\times 3}{24x^{2}}-\frac{x^{2}\times 8\times 3x^{2}}{24x^{2}}+\frac{x^{3}\times 8x^{2}}{3\times 8x^{2}}\) - step6: Multiply the numbers: \(\frac{5\times 3}{24x^{2}}-\frac{x^{2}\times 8\times 3x^{2}}{24x^{2}}+\frac{x^{3}\times 8x^{2}}{24x^{2}}\) - step7: Transform the expression: \(\frac{5\times 3-x^{2}\times 8\times 3x^{2}+x^{3}\times 8x^{2}}{24x^{2}}\) - step8: Multiply the numbers: \(\frac{15-x^{2}\times 8\times 3x^{2}+x^{3}\times 8x^{2}}{24x^{2}}\) - step9: Multiply the terms: \(\frac{15-24x^{4}+x^{3}\times 8x^{2}}{24x^{2}}\) - step10: Multiply the terms: \(\frac{15-24x^{4}+8x^{5}}{24x^{2}}\) Aquí están las soluciones simplificadas para cada una de las expresiones: a) \( 6 x^{2}-4 x^{2}+x^{2} \) se simplifica a: \[ 3x^{2} \] b) \( -3 x+8 x-15 x \) se simplifica a: \[ -10x \] c) \( -x^{4}-2 x^{3}+6 x^{3} \) se simplifica a: \[ -x^{4}+4x^{3} \] d) \( x-3 \div 4 x+2 \div 3 x \) se simplifica a: \[ \frac{12x^{2}-1}{12x} \] e) \( 5 \div 8 x^{2}-x^{2}+x^{3} \div 3 \) se simplifica a: \[ \frac{15-24x^{4}+8x^{5}}{24x^{2}} \] f) \( 4 x-2 \div 9 x+x \div 3 \) se simplifica a: \[ \frac{39x^{2}-2}{9x} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Let's have some fun simplifying these expressions! For part a), combine like terms: \(6x^2 - 4x^2 + x^2 = (6 - 4 + 1)x^2 = 3x^2\). So, the simplified result is \(3x^2\). For part b), again combine like terms: \(-3x + 8x - 15x = (-3 + 8 - 15)x = -10x\). The simplified result is \(-10x\). For part c), combine like terms: \(-x^4 - 2x^3 + 6x^3 = -x^4 + (6 - 2)x^3 = -x^4 + 4x^3\). So, the result is \(-x^4 + 4x^3\). For part d), dividing terms is a fun challenge! Rewrite it as: \((x-3) / (4x) + (2) / (3x)\). To combine, find a common denominator: \(12x\). This gives us \(\frac{3(x-3) + 8}{12x} = \frac{-3 + 3x + 8}{12x} = \frac{3x + 5}{12x}\). For part e), combine the fractions. This will need a common denominator. The expression simplifies to \(\frac{5}{8}x^2 - x^2 + \frac{x^3}{3}\). Writing everything in terms of a common denominator gives you: \(\frac{5 - 8 + \frac{8}{3}x^3}{8} = \frac{-3 + \frac{8}{3}x^3}{8}\). Lastly, for part f), it combines nicely: \(4x - \frac{2}{9}x + \frac{1}{3}x\). Finding a common denominator for \(-\frac{2}{9}x\) and \(\frac{1}{3}x\) lets you simplify down to \(\frac{36x - 2x + 3x}{9} = \frac{37x}{9}\). Math is like a puzzle, and combining like terms or diving into fractions is like piecing together the most colorful of mosaics! 🍀✨

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy