In each of the inequalities below, solve for \( x \) and show the solution on a number line. 1. \( -15 \leq 4 x+1<1 \) and \( x \in \mathbb{R} \) 2. \( -15<1-4 x<5 \) and \( x \in \mathbb{R} \) 3. \( 5<2 x+3 \leq 17 \) and \( x \in \mathbb{R} \) 4. \( -5<2 x-3 \leq 11 \) and \( x \in \mathbb{Z} \) 5. \( -12 \leq 3-3 x<6 \) and \( x \in \mathbb{N} \) 6. \( \frac{1}{2}<\frac{x-1}{6} \leq \frac{1}{12} \) and \( x \in \mathbb{Z} \) 7. \( -2 \leq 2-4 x<6 \) and \( x \in \mathbb{R} \) 8. \( 0<\frac{x}{3}+1 \leq 3 \) and \( x \in \mathbb{R} \) 9. \( \frac{1}{4} \leq \frac{x}{12}+\frac{1}{3}<1 \frac{1}{6} \) and \( x \in \mathbb{Z} \)
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
The Deep Dive
Sure! Let’s break down those inequalities with flair and precision. 1. For \( -15 \leq 4x + 1 < 1 \): - Solve \( -15 \leq 4x + 1 \) to find \( x \). - Rearranging gives \( 4x \geq -16 \) → \( x \geq -4 \). - Now solve \( 4x + 1 < 1 \): - Rearranging gives \( 4x < 0 \) → \( x < 0 \). - Therefore, \( -4 \leq x < 0 \). On a number line, this is between -4 (inclusive) and 0 (exclusive). 2. For \( -15 < 1 - 4x < 5 \): - First, solve \( -15 < 1 - 4x \): - Rearranging gives \( -16 < -4x \) → \( 4x < 16 \) → \( x > -4 \). - Now solve \( 1 - 4x < 5 \): - Rearranging gives \( -4x < 4 \) → \( x > -1 \). - Thus, combining gives \( -4 < x < -0.5 \). On a number line, this is an open interval from -4 to about -0.5. 3. For \( 5 < 2x + 3 \leq 17 \): - Solve \( 5 < 2x + 3 \) → \( 2x > 2 \) → \( x > 1 \). - Solve \( 2x + 3 \leq 17 \) → \( 2x \leq 14 \) → \( x \leq 7 \). - So, \( 1 < x \leq 7 \). On a number line, this is an open dot at 1 and a closed dot at 7. 4. For \( -5 < 2x - 3 \leq 11 \): - Solve \( -5 < 2x - 3 \) → \( 2x > -2 \) → \( x > -1 \). - Solve \( 2x - 3 \leq 11 \) → \( 2x \leq 14 \) → \( x \leq 7 \). - Thus, the solution is \( -1 < x \leq 7 \) and since \( x \in \mathbb{Z} \), the integers are \( 0, 1, 2, 3, 4, 5, 6, 7 \). 5. For \( -12 \leq 3 - 3x < 6 \): - Solve \( -12 \leq 3 - 3x \) → \( -15 \leq -3x \) → \( x \leq 5 \). - Solve \( 3 - 3x < 6 \) → \( -3x < 3 \) → \( x > -1 \). - Thus, \( -1 < x \leq 5 \). Since \( x \in \mathbb{N} \), valid integers are \( 1, 2, 3, 4, 5 \). 6. For \( \frac{1}{2} < \frac{x-1}{6} \leq \frac{1}{12} \): - Solve \( \frac{1}{2} < \frac{x-1}{6} \) → \( 3 < x - 1 \) → \( x > 4 \). - Solve \( \frac{x-1}{6} \leq \frac{1}{12} \) → \( x - 1 \leq \frac{1}{2} \) → \( x \leq 1.5 \). - Hence, no integer \( x \) satisfies both conditions simultaneously. 7. For \( -2 \leq 2 - 4x < 6 \): - Solve \( -2 \leq 2 - 4x \) → \( -4 \leq -4x \) → \( x \geq 1 \). - Solve \( 2 - 4x < 6 \) → \( -4x < 4 \) → \( x > -1 \). - Combining gives \( 1 \leq x < 2 \). 8. For \( 0 < \frac{x}{3} + 1 \leq 3